Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged.
Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate.
Editorial statements for the individual departments are provided below.
Health Care Analytics
Departmental Editors:
Margrét Bjarnadóttir, University of Maryland
Nan Kong, Purdue University
With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes.
The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics.
Health Care Operations Management
Departmental Editors:
Nilay Tanik Argon, University of North Carolina at Chapel Hill
Bob Batt, University of Wisconsin
The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society.
Health Care Management Science Practice
Departmental Editor:
Vikram Tiwari, Vanderbilt University Medical Center
The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful.
Health Care Productivity Analysis
Departmental Editor:
Jonas Schrey?gg, University of Hamburg
The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity.
Public Health Policy and Medical Decision Making
Departmental Editors:
Ebru Bish, University of Alabama
Julie L. Higle, University of Southern California
The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems.
The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that:
Study high-impact problems involving health policy, treatment planning and design, and clinical applications;
Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines;
Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations.
Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies.
Emerging Topics
Departmental Editor:
Alec Morton, University of Strathclyde
Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
《Health Care Management Science》是一本由Springer Nature出版商出版的專業(yè)醫(yī)學(xué)期刊,該刊創(chuàng)刊于1998年,刊期4 issues per year,該刊已被國際權(quán)威數(shù)據(jù)庫SCIE、SSCI收錄。在中科院最新升級(jí)版分區(qū)表中,該刊分區(qū)信息為大類學(xué)科:醫(yī)學(xué)3區(qū),小類學(xué)科:衛(wèi)生政策與服務(wù) 3區(qū);在JCR(Journal Citation Reports)分區(qū)等級(jí)為Q2。該刊發(fā)文范圍涵蓋HEALTH POLICY & SERVICES等領(lǐng)域,旨在及時(shí)、準(zhǔn)確、全面地報(bào)道國內(nèi)外HEALTH POLICY & SERVICES工作者在該領(lǐng)域取得的最新研究成果、工作進(jìn)展及學(xué)術(shù)動(dòng)態(tài)、技術(shù)革新等,促進(jìn)學(xué)術(shù)交流,鼓勵(lì)學(xué)術(shù)創(chuàng)新。2023年影響因子為2.3,平均審稿速度 。
中科院分區(qū)(當(dāng)前數(shù)據(jù)版本:2023年12月升級(jí)版)
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
醫(yī)學(xué) | 3區(qū) | HEALTH POLICY & SERVICES 衛(wèi)生政策與服務(wù) | 3區(qū) | 否 | 否 |
中科院分區(qū)(當(dāng)前數(shù)據(jù)版本:2022年12月升級(jí)版)
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
醫(yī)學(xué) | 2區(qū) | HEALTH POLICY & SERVICES 衛(wèi)生政策與服務(wù) | 1區(qū) | 否 | 否 |
中科院分區(qū)(當(dāng)前數(shù)據(jù)版本:2021年12月舊的升級(jí)版)
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
醫(yī)學(xué) | 2區(qū) | HEALTH POLICY & SERVICES 衛(wèi)生政策與服務(wù) | 2區(qū) | 否 | 否 |
中科院分區(qū)(當(dāng)前數(shù)據(jù)版本:2021年12月升級(jí)版)
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
醫(yī)學(xué) | 2區(qū) | HEALTH POLICY & SERVICES 衛(wèi)生政策與服務(wù) | 2區(qū) | 否 | 否 |
中科院分區(qū)(當(dāng)前數(shù)據(jù)版本:2020年12月舊的升級(jí)版)
大類學(xué)科 | 分區(qū) | 小類學(xué)科 | 分區(qū) | Top期刊 | 綜述期刊 |
醫(yī)學(xué) | 3區(qū) | HEALTH POLICY & SERVICES 衛(wèi)生政策與服務(wù) | 2區(qū) | 否 | 否 |
名詞釋義:中科院分區(qū)是中國科學(xué)院國家科學(xué)圖書館制定,中科院分區(qū)目前分為基礎(chǔ)版和升級(jí)版(試行),基礎(chǔ)版先將JCR中所有期刊分為13大類學(xué)科,每個(gè)學(xué)科分類按照期刊的3年平均影響因子高低,分為4四個(gè)區(qū);升級(jí)版將期刊分為18個(gè)大類學(xué)科,涵蓋數(shù)學(xué)、物理與天體物理、化學(xué)、材料科學(xué)、地球科學(xué)等大類學(xué)科;升級(jí)版設(shè)計(jì)了“期刊超越指數(shù)”取代影響因子指標(biāo)。期刊超越指數(shù)即本刊論文的被引頻次高于相同主題、相同文獻(xiàn)類型的其它期刊的概率。
JCR分區(qū)(當(dāng)前數(shù)據(jù)版本:2023-2024年最新版)
按JIF指標(biāo)學(xué)科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學(xué)科:HEALTH POLICY & SERVICES | SSCI | Q2 | 52 / 118 |
56.4% |
按JCI指標(biāo)學(xué)科分區(qū) | 收錄子集 | 分區(qū) | 排名 | 百分位 |
學(xué)科:HEALTH POLICY & SERVICES | SSCI | Q1 | 25 / 119 |
79.41% |
名詞釋義:JCR(Journal Citation Reports)由科睿唯安公司(前身為湯森路透)開發(fā),JCR分區(qū)將期刊分為176個(gè)學(xué)科。該排名根據(jù)當(dāng)年不同學(xué)科的影響因子,分為Q1、Q2、Q3、Q4四個(gè)區(qū)域。 Q1代表不同學(xué)科進(jìn)行分類可以影響細(xì)胞因子前25%的期刊,以此作為類推,Q2是前25%-50%的期刊,Q3是前50%-75%的期刊,Q4是后期75%的期刊。
Cite Score 排名
CiteScore | SJR | SNIP | 學(xué)科類別 | 分區(qū) | 排名 | 百分位 |
7.2 | 0.958 | 1.293 | 大類:Health Professions 小類:General Health Professions | Q1 | 3 / 21 |
88% |
大類:Health Professions 小類:Medicine (miscellaneous) | Q1 | 61 / 398 |
84% |
名詞釋義:CiteScore 是在 Scopus 中衡量期刊影響力的另一個(gè)指標(biāo),其作用是測(cè)量期刊的篇均影響力。當(dāng)年CiteScore 的計(jì)算依據(jù)是期刊最近4年 (含計(jì)算年度) 的被引次數(shù)除以該期刊近四年發(fā)表的文獻(xiàn)數(shù),文獻(xiàn)類型包括:文章、評(píng)論、會(huì)議論文、書籍章節(jié)和數(shù)據(jù)論文,社論勘誤表、信件、說明和簡短調(diào)查等非同行評(píng)議的文獻(xiàn)類型均不包含在內(nèi)。
1、Health Care Management Science期刊該細(xì)分領(lǐng)域中屬于中等級(jí)別的SCI期刊,在國際上比較受認(rèn)可,過審相對(duì)不是特別難, 值得關(guān)注的一本刊物。研究方向?yàn)镠EALTH POLICY & SERVICES,建議您投遞與此行業(yè)相關(guān)的稿件,以兔被拒稿耽誤您的時(shí)間。建議稿件控制10頁以上,4600單詞字?jǐn)?shù)以上(未翻譯中文字?jǐn)?shù)8600字?jǐn)?shù)以上);文章撰寫語言為英語;(單欄格式,單倍行距,內(nèi)容10號(hào)字體,文章內(nèi)容包含:題目,所有作者姓名、最高學(xué)位,作者單位(精確到部門),通信作者郵箱,摘要,關(guān)鍵詞,內(nèi)容,總結(jié),項(xiàng)目基金,參考文獻(xiàn),所有作者相片+簡介)。
2、該期刊近年沒有被列入國際期刊預(yù)警名單(2021年12月發(fā)布的2021版),廣大學(xué)者可以放心選擇。鼓勵(lì)提交以前未發(fā)表的文章,禁止一稿多投;拒絕抄襲、機(jī)械性的稿件;平均審稿速度 。
3、稿件重復(fù)率控制10%以內(nèi),論文務(wù)必保證原創(chuàng)性、圖標(biāo)、公式、引文等要素齊備,已發(fā)表或引用過度的文章將不會(huì)被出版和檢索。
4、稿件必須有較好的英語表達(dá)水平,有圖,有表,有公式,有數(shù)據(jù)或設(shè)計(jì),有算法(方案,模型),實(shí)驗(yàn),仿真等。
5、參考文獻(xiàn)控制25條以上,參考文獻(xiàn)引用一半以上控制在近5年以內(nèi);圖表分辨率必須達(dá)到300dpi;參考文獻(xiàn)與文獻(xiàn)綜述能反映國際研究前沿。
6、若您想聯(lián)系Health Care Management Science出版商,請(qǐng)根據(jù)該地址聯(lián)系:Health Care Manag. Sci.。
7、如果你想快速在SCI期刊發(fā)表,可以咨詢本站的客服老師,我們將為你提供SCI期刊全過程管理服務(wù),不成功不收取任何費(fèi)用。
影響因子 | h-index | Gold OA文章占比 | 研究類文章占比 | OA開放訪問 | 平均審稿速度 |
2.3 | -- | 31.75% | 100.00% | 未開放 |
IF值(影響因子)趨勢(shì)圖
中科院JCR分區(qū)趨勢(shì)圖
引文指標(biāo)和發(fā)文量趨勢(shì)圖
自引數(shù)據(jù)趨勢(shì)圖
名詞釋義:影響因子 簡稱IF,是湯森路透(Thomson Reuters)出品的期刊引證報(bào)告(Journal Citation Reports,JCR)中的一項(xiàng)數(shù)據(jù)。 即某期刊前兩年發(fā)表的論文在該報(bào)告年份(JCR year)中被引用總次數(shù)除以該期刊在這兩年內(nèi)發(fā)表的論文總數(shù)。這是一個(gè)國際上通行的期刊評(píng)價(jià)指標(biāo),是衡量學(xué)術(shù)期刊影響力的一個(gè)重要指標(biāo)。
中科院同小類學(xué)科熱門期刊 | 影響因子 | 中科院分區(qū) | 瀏覽次數(shù) |
Hepatobiliary Surgery And Nutrition | 6.1 | 2區(qū) | 8719 |
International Journal Of Health Policy And Management | 3.1 | 3區(qū) | 7930 |
Journal Of Pharmaceutical Innovation | 2.7 | 4區(qū) | 7214 |
Laryngoscope Investigative Otolaryngology | 1.6 | 4區(qū) | 5858 |
Journal Of Evidence-based Dental Practice | 4.1 | 4區(qū) | 4579 |
International Journal Of Transgender Health | 10.5 | 2區(qū) | 4038 |
Circulation-genomic And Precision Medicine | 6 | 2區(qū) | 3633 |
Bmc Gastroenterology | 2.5 | 3區(qū) | 3476 |
Phytomedicine | 6.7 | 1區(qū) | 3364 |
Journal Of Ethnopharmacology | 4.8 | 2區(qū) | 3268 |
若用戶需要出版服務(wù),請(qǐng)聯(lián)系出版商:Health Care Manag. Sci.。