時間:2023-03-21 17:06:53
緒論:在尋找寫作靈感嗎?愛發(fā)表網(wǎng)為您精選了8篇燃料電池技術(shù)論文,愿這些內(nèi)容能夠啟迪您的思維,激發(fā)您的創(chuàng)作熱情,歡迎您的閱讀與分享!
燃料電池是一種不經(jīng)過燃燒而以電化學(xué)反應(yīng)方式將燃料的化學(xué)能直接變?yōu)殡娔艿陌l(fā)電裝置,可以用天然氣、石油液化氣、煤氣等作為燃料。也是煤炭潔凈轉(zhuǎn)化技術(shù)之一。按電解質(zhì)種類可分為堿性燃料電池(AFC)、磷酸型燃料電池(PAFC)、熔融碳酸鹽燃料電池(MCFC)、固體氧化物燃料電池(SOFC)、質(zhì)子交換膜燃料電池(PEMFC)、再生氫氧燃料電池(RFC)、直接醇類燃料電池(DMFC),還有如新型儲能電池、固體聚合物型電池等。
氫和氧氣是燃料電池常用的燃料氣和氧化劑。此外,CO等一些氣體也可作為MCFC與SOFC的燃料。從長遠發(fā)展看,高溫型MCFC和SOFC系統(tǒng)是利用煤炭資源進行高效、清潔發(fā)電的有效途徑。我國豐富的煤炭資源是燃料電池所需燃料的巨大來源。
燃料電池具有高效率、無污染、建設(shè)周期短、易維護以及成本低的誘人特點,它不僅是汽車最有前途的替代清潔能源,還能廣泛用于航天飛機、潛艇、水下機器人、通訊系統(tǒng)、中小規(guī)模電站、家用電源,又非常適合提供移動、分散電源和接近終端用戶的電力供給,還能解決電網(wǎng)調(diào)峰問題。隨著燃料電池的商業(yè)化推廣,市場前景十分廣闊。人們預(yù)測,燃料電池將成為繼火電、水電、核電后的第四電方式[1],它將引發(fā)21世紀新能源與環(huán)保的綠色革命。
1,中國燃料電池技術(shù)的進展
“燃料電池技術(shù)”是我國“九五”期間的重大發(fā)展項目,目標是,利用我國的資源優(yōu)勢,從高起點做起,加強創(chuàng)新;在“九五”期間,使我國燃料電池的技術(shù)發(fā)展接近國際水平。內(nèi)容包括“質(zhì)子交換膜燃料電池技術(shù)”、“熔融碳酸鹽燃料電池技術(shù)”及“固體氧化物燃料電池技術(shù)”三大項目[2],其中,用于電動汽車的“5kW質(zhì)子交換膜燃料電池”列為開發(fā)的重點。此項任務(wù)由中國科學(xué)院及部門所屬若干研究所承擔。所定目標業(yè)已全部實現(xiàn)。
在質(zhì)子交換膜燃料電池(PEMFC)方面,我國研究開發(fā)的這類電池已經(jīng)達到可以裝車的技術(shù)水平,可以與世界發(fā)達國家競爭,而且在市場份額上,可以并且有能力占有一定比例[1]。我國自把質(zhì)子交換膜燃料電池列為"九五"科技攻關(guān)計劃的重點項目以后,以大連化學(xué)物理研究所為牽頭單位,在全國范圍內(nèi)全面開展了質(zhì)子交換膜燃料電池的電池材料與電池系統(tǒng)的研究,取得了很大進展,相繼組裝了多臺百瓦、1kW-2kW、5kW、10kW至30kW電池組與電池系統(tǒng)。5kW電池組包括內(nèi)增濕部分,其重量比功率為100W/kg,體積比功率為300W/L。質(zhì)子交換膜燃料電池自行車已研制成功,現(xiàn)已開發(fā)出200瓦電動自行車用燃料電池系統(tǒng)。百瓦級移動動力源和5kW移動通訊機站動力源也已開發(fā)成功。千瓦級電池系統(tǒng)作為動力源,已成功地進行了應(yīng)用試驗。由6臺5kW電池組構(gòu)成的30kW電池系統(tǒng)已成功地用作中國首臺燃料電池輕型客車動力源。裝車電池最大輸出功率達46千瓦。目前該車最高時速達60.6km/h,為燃料電池電動汽車以及混合動力電動汽車的發(fā)展打下良好的基礎(chǔ)。該電池堆整體性能相當于奔馳、福特與加拿大巴拉德公司聯(lián)合開發(fā)的MK7質(zhì)子交換膜燃料電池電動車的水平[3]。我國目前正在進行大功率質(zhì)子交換膜燃料電池組的開發(fā)和燃料電池發(fā)動機系統(tǒng)集成的研究。
在熔融碳酸鹽燃料電池(MCFC)方面,我國已經(jīng)研制出α和γ型偏鋁酸鋰粗、細粉料,制備出大面積(大于0.2m2)的電池隔膜,預(yù)測隔膜壽命超過3萬小時。在進行材料部件研究的基礎(chǔ)上,成功組裝和運行了千瓦級電池組。
在固體氧化物燃料電池(SOFC)技術(shù)方面,已經(jīng)制備出厚度為5-10μm的負載型致密YSZ電解質(zhì)薄膜,研制出一種能用作中溫SOFC連接體的Ni基不銹鋼材料。負載型YSZ薄膜基中溫SOFC單體電池的最大輸出功率密度達到0.4W/cm2,負載型LSGM薄膜基中溫SOFC單體電池的最大輸出功率密度達到0.8W/cm2。這些技術(shù)創(chuàng)新為研制千瓦級、十千瓦級中溫固體氧化物燃料電池發(fā)電技術(shù)的研發(fā)奠定了堅實基礎(chǔ)。
2,國外燃料電池技術(shù)發(fā)展迅猛
燃料電池是新世紀最有前途的清潔能源,是替代傳統(tǒng)能源的最佳選擇。因此,燃料電池技術(shù)的研究開發(fā)受到許多國家的政府和跨國大公司的極大重視。美國將燃料電池技術(shù)列為涉及國家安全的技術(shù)之一,《時代》周刊將燃料電池電動汽車列為21世紀10大高技術(shù)之首;日本政府認為燃料電池技術(shù)是21世紀能源環(huán)境領(lǐng)域的核心;加拿大計劃將燃料電池發(fā)展成國家的支柱產(chǎn)業(yè)。近十年來,國外政府和企業(yè)在燃料電池方面的投資額超過100億美元。為開發(fā)燃料電池,戴姆勒-克萊斯勒公司一家近年來每年就投入10億美元,豐田公司的年投資額超過50億日元[4]。
歐、美發(fā)達國家和日本等國政府和企業(yè)界都將大型燃料電池的開發(fā)作為重點研究項目,并且已取得了許多重要成果,PEMFC技術(shù)已發(fā)展到實用階段,使得燃料電池即將取代傳統(tǒng)發(fā)電機及內(nèi)燃機而廣泛應(yīng)用于發(fā)電及汽車上。2MW、4.5MW、11MW成套燃料電池發(fā)電設(shè)備已進入商業(yè)化生產(chǎn),用于國防、航天、汽車、醫(yī)院、工廠、居民區(qū)等方面;各等級的燃料電池發(fā)電廠相繼在一些發(fā)達國家建成,其中,國際燃料電池產(chǎn)業(yè)巨頭加拿大巴拉德公司籌資3.2億美元,建成的燃料電池廠已于2001年2月正式投產(chǎn)。美國和歐洲將成批生產(chǎn)低成本的家用供電-供暖燃料電池作為最近的開發(fā)計劃。目前,在北美、日本和歐洲,燃料電池發(fā)電正快速進入工業(yè)化規(guī)模應(yīng)用的階段。
目前,車用氫燃料電池已成為世界各大汽車公司技術(shù)開發(fā)的重中之重。迄今為止,世界6大汽車公司在開發(fā)氫燃料電池車上的開發(fā)費用已超過100億美元,并以每年10億美元的速度遞增[5]。1997年至2001年,各大公司研制出的車用燃料電池就達41種。
3,我國開發(fā)燃料電池技術(shù)相對乏力
我國研究燃料電池有過起落。在20世紀60年代曾開展過多種燃料電池的實驗室研究,70年入大量人力物力開展用于空間技術(shù)的燃料電池研究,其后研究工作長期停頓。最近幾年,我國才開始重新重視燃料電池技術(shù)的研究開發(fā),并取得很大進展。特別在PEMFC方面,達到或接近了世界水平。但是,在總體上,我國燃料電池的研究開發(fā)剛剛起步,仍處于科研階段,與國外相比,我國的燃料電池研究水平還較低,我國對燃料電池的組織開發(fā)力度還遠遠不夠。作為世界上最大的煤炭生產(chǎn)國和消費國,開發(fā)以煤作為一次能源的高溫型MCFC和SOFC具有特別重要的意義。但是我國在MCFC、SOFC研究方面與國外的差距很大,要實現(xiàn)實用化、商業(yè)化應(yīng)用還有很長的路要走。迄今為止,我國還沒有燃料電池發(fā)電站的應(yīng)用實例。這和我國這樣一個大國的地位很不相稱。盡管國家也將燃料電池技術(shù)列為"九五"攻關(guān)項目,國家和企業(yè)投入的資金卻極為有限,年度經(jīng)費僅為千萬元量級人民幣,與發(fā)達國家數(shù)億美元的投入相比顯得微不足道;承擔研究任務(wù)的也只是中科院等少數(shù)科研院所,且研究力量分散,缺少企業(yè)的介入,難以取得突破性進展,尤其是難以將取得的研究成果進行實際應(yīng)用試驗,以形成產(chǎn)業(yè)化趨勢。從表1所列國外燃料電池的研究和開況看,歐、美國家和日本等大多是以公司企業(yè)為主在從事燃料電池的研究開發(fā)和制造生產(chǎn),而且規(guī)模很大,例如,僅加拿大的Ballard一家公司的資產(chǎn)就達10億美元。
4,大力發(fā)展燃料電池技術(shù)勢在必行
從世界燃料電池迅猛發(fā)展的勢頭看,本世紀頭十年將是燃料電池發(fā)電技術(shù)商品化、產(chǎn)業(yè)化的重要階段,其技術(shù)實用性、生產(chǎn)成本等都將取得重大突破。預(yù)計燃料電池系統(tǒng)將在潔凈煤燃料電池電站、電動汽車、移動電源、不間斷電源、潛艇及空間電源等方面有著廣泛的應(yīng)用前景,潛在市場十分巨大??梢灶A(yù)料,分散電源供電系統(tǒng)——燃料電池發(fā)電廠必將在21世紀內(nèi)取代以“大機組、大電網(wǎng)、高電壓”為主要特征的現(xiàn)代電力系統(tǒng),成為電力行業(yè)的主力軍。而燃料電池的普遍推廣應(yīng)用,必將在能源及相關(guān)領(lǐng)域引發(fā)一場深刻的革命,促進新興產(chǎn)業(yè)的形成,帶動國民經(jīng)濟高速發(fā)展。能源領(lǐng)域的這場革命是我國政府、企業(yè)、科研院所、高等院校不得不正視的課題,我們對此必須有充分認識并給予足夠的重視。我們應(yīng)該準確把握這場革命所帶給我們的機遇,毫不遲疑地投入足夠的人力、物力、財力,推動燃料電池發(fā)電技術(shù)的研究開發(fā)和應(yīng)用工作,使之早日實用化產(chǎn)業(yè)化,為我國的國家能源安全和國民經(jīng)濟可持續(xù)發(fā)展服務(wù)。
國家計委在1997年提出的中國潔凈煤技術(shù)到2010年的發(fā)展綱要中,已把燃料電池列為煤炭工業(yè)潔凈煤的14項技術(shù)重點發(fā)展目標之一[6]。在“十五”科技發(fā)展規(guī)劃中,燃料電池技術(shù)被列為重點實施的重大項目[7]。
關(guān)鍵詞:質(zhì)子交換膜燃料電池;雙極板;電極;催化劑
1質(zhì)子交換膜燃料電池的結(jié)構(gòu)及原理
按照電解質(zhì)的不同可將燃料電池分為磷酸燃料電池、堿性燃料電池、固體氧化物燃料電池、熔融碳酸鹽燃料電池及質(zhì)子交換膜燃料電池(PEMFC)等五類。PEMFC單電池由質(zhì)子交換膜、氣體擴散電極、雙極板等構(gòu)成,圖1是其結(jié)構(gòu)與工作原理示意圖。
PEMFC的基本工作過程如下:
(1)氫氣通過雙極板上的導(dǎo)氣通道到達電池的陽極,氫分子在催化劑的作用下解離形成氫離子和電子;
(2)氫離子以水合質(zhì)子H+(xH2O)的形式通過電解質(zhì)膜到達陰極,電子在陽極側(cè)積累;
(3)氧氣通過雙極板到達陰極后,氧分子在催化劑的作用下變成氧離子,陰、陽極間形成一個電勢差;
(4)陽極和陰極通過外電路連接起來,在陽極積聚的電子就會通過外電路到達陰極,形成電流,對負載做功。同時,在陰極側(cè)反應(yīng)生成水;
(5)只要持續(xù)不斷地提供反應(yīng)氣體,PEMFC就可以連續(xù)工作,對外提供電能。
2質(zhì)子交換膜燃料電池的特點
(1)高效率。PEMFC以電化學(xué)方式進行能量轉(zhuǎn)換,不存在燃燒過程,不受卡諾循環(huán)限制,其理論熱效率可達85-90%,目前的實際效率大約是內(nèi)燃機的兩倍。傳統(tǒng)動力源為了提高效率必須將負荷限制在很小范圍內(nèi),而PEMFC幾乎在全部負荷范圍內(nèi)均有很高效率。
(2)模塊化。PEMFC在結(jié)構(gòu)上具有模塊化的特點,可根據(jù)不同動力需求組合安裝,采用“搭積木”式的設(shè)計方法簡化了不同規(guī)模電堆的設(shè)計制造過程。
(3)高可靠性。由于PEMFC電堆采用模塊化的設(shè)計方法,結(jié)構(gòu)簡單,易于維護。一旦某個單電池發(fā)生故障,可自動采取適當屏蔽措施,只會使系統(tǒng)輸出功率略有下降,而不會導(dǎo)致整個動力系統(tǒng)的癱瘓。
(4)燃料多樣性。PEMFC動力系統(tǒng)既可以純氫為燃料,也可以重整氣為燃料。氫氣的來源可以是電解水的產(chǎn)物,也可以是對汽油、柴油、二甲醚等化石類燃料重整的產(chǎn)物。氫氣的存儲方式可以是高壓氣罐、液氫、金屬氫化物等。
(5)環(huán)境友好。當采用純氫為燃料時,PEMFC的唯一產(chǎn)物是水,可以做到零排放。以重整氣為燃料時,相對于內(nèi)燃機而言,排放也極大降低。此外,PEMFC噪聲水平也很低,各結(jié)構(gòu)部件均可回收利用。3研究現(xiàn)狀
3.1關(guān)鍵部件
電解質(zhì)膜、雙極板、催化劑及氣體擴散電極是質(zhì)子交換膜燃料電池的四大關(guān)鍵部件。
電解質(zhì)膜是PEMFC的核心部件,它直接影響燃料電池的性能與壽命。1962年美國杜邦公司研制成功全氟磺酸型質(zhì)子交換膜,1966年開始用于燃料電池,其商業(yè)型號為Nafion,至今仍廣泛使用。但由于Nafion膜成本較高,各國科學(xué)家正在研究部分氟化或非氟質(zhì)子交換膜。
雙極板在PEMFC中起著支撐、集流、分割氧化劑與還原劑并引導(dǎo)氣體在電池內(nèi)電極表面流動的作用,目前廣泛采用的是以石墨為材料,在其上加工出引導(dǎo)氣體流動的流場,基本流場形式有蛇形、平行、交指及網(wǎng)格狀等。
鉑基催化劑是目前性能最好的電極催化劑,為提高利用率,鉑以納米級顆粒形式高分散地擔載到導(dǎo)電、抗腐蝕的擔體上,目前廣泛采用的擔體為乙炔炭黑,比表面積約為250m2/g,平均粒徑為30nm。
PEMFC的氣體擴散電極由兩層構(gòu)成,一層為起支撐作用的擴散層,另一層為電化學(xué)反應(yīng)進行的場所催化層。擴散層一般選用炭材如石墨化炭紙或炭布制備,應(yīng)具備高孔隙率和適宜的孔分布,不產(chǎn)生腐蝕或降解。根據(jù)制備工藝和厚度不同,催化層分為厚層憎水、薄層親水及超薄三種類型。
3.2測控系統(tǒng)
PEMFC的工作性能受多種因素(溫度、壓力等)的影響,為確保PEMFC正常運行,提高其可靠性和有效性,就必須監(jiān)測各個影響因素。即運用有效的措施來連續(xù)監(jiān)測PEMFC運行的關(guān)鍵或重要狀態(tài),并對收集到的信息進行必要的分析和處理,以便做到故障預(yù)測和及時診斷,為PEMFC管理系統(tǒng)提供依據(jù)。目前,進行PEMFC測試系統(tǒng)相關(guān)方面研究的公司和機構(gòu)眾多,但仍沒有制定出有關(guān)PEMFC測試的國際標準和相應(yīng)的標準測試設(shè)備,不過已有實用的測試系統(tǒng)投入使用。加拿大Hydrogenics公司的燃料電池測試站(FCATS)、美國Arbin公司的集成燃料電池測試系統(tǒng)(FCTS)是其中的突出代表。
4質(zhì)子交換膜燃料電池的應(yīng)用
質(zhì)子交換膜燃料電池是目前各種燃料電池中實用程度較高的一類。其優(yōu)越性不僅限于能量轉(zhuǎn)換效率高、工作溫度低,還體現(xiàn)在其可在較大的電流密度下工作,適宜于較頻繁啟動的場合。因此世界各大汽車生產(chǎn)廠商一致看好其在汽車工業(yè)中的應(yīng)用前景,PEMFC已成為現(xiàn)今燃料電池汽車動力的主要發(fā)展方向。目前,通用、豐田等世界上知名的汽車公司,都在積極開發(fā)以PEMFC系統(tǒng)為動力源的PEMFC電動車,曾先后推出各種類型的樣車,并進行PEMFC電動車隊的示范運行。PEMFC電動車以其優(yōu)異的性能和環(huán)境污染很少等突出特點引起了人們的普遍關(guān)注,甚至被認為將是21世紀內(nèi)燃機汽車最為有力的競爭者。
此外,在航空航天特別是無人飛行器領(lǐng)域,以及家庭電源、分散電站、移動電子設(shè)備電源、水下機器人及潛艇不依賴空氣推進電源等方面也有廣泛應(yīng)用前景。
5質(zhì)子交換膜燃料電池的發(fā)展趨勢
在關(guān)鍵部件方面,圍繞電解質(zhì)膜、催化劑及雙極板的研究方興未艾。全氟型磺酸膜價格昂貴,開發(fā)非全氟的廉價質(zhì)子交換膜是今后的研究方向。近年來,新型質(zhì)子交換膜的的研究熱點是開發(fā)能夠在100℃以上使用的高溫電解質(zhì)膜。在催化劑方面,研制高性能抗CO中毒電極催化劑是最緊迫的任務(wù),此外,還要尋找非貴金屬氮化物或碳化物作為現(xiàn)有鉑催化劑的替代。目前廣泛使用的石墨板具有較好的耐腐蝕能力和較高的熱導(dǎo)率,但成本較高,加工難度大,強度、電導(dǎo)率和可回收性均不如金屬板。金屬板目前急需解決的問題是表面處理,以提高其耐腐蝕能力。復(fù)合材料雙極板則結(jié)合了純石墨板和金屬板的優(yōu)點,具有耐腐蝕、體積小、質(zhì)量輕、強度大及工藝性良好等特點,是未來發(fā)展的趨勢。
在電堆方面,今后的研究重點將是使電堆中的電池單元的性能接近于單電池的性能,這就需要對電堆的結(jié)構(gòu)進行優(yōu)化,保證電堆中每一片電池單元的整個活性面積處于一致的操作環(huán)境,并優(yōu)化水、熱管理,改善電流密度分布的均勻性。
參考文獻
PAFC技術(shù)開發(fā)的現(xiàn)狀與動向:
日本自實施月光計劃以來,作為國家級項目,正在實施5000千瓦級加壓型和1000千瓦級常壓型電廠實證運行。目前,磷酸型燃料電池的發(fā)電效率為30%~40%,如果將熱利用考慮進去,綜合效率可高達60%~80%。
除日本外,目前世界約有60臺PAFC發(fā)電設(shè)備在運轉(zhuǎn),總輸出功率約為4.1萬千瓦。按國別和地區(qū)劃分日本為2.9萬千瓦,美國8000千瓦,歐洲3000千瓦,亞洲900千瓦。運轉(zhuǎn)中的發(fā)電設(shè)備除3臺(日本2臺,意大利1臺)為加壓型外,其他均為常壓型。磷酸型燃料電池的制造廠家目前主要為日本和美國,設(shè)備主要銷往歐、亞。
美國已完成基礎(chǔ)研究,200千瓦級電廠用電池近期有望商品化,但大容量電廠用電池處于停滯狀態(tài)。德國已引進美國200千瓦級電廠用電池進行試驗運行。另外,瑞典、意大利、瑞士等國也引進日、美的電池進行試運行。
2.熔融碳酸鹽型燃料電池(MCFC)
日本對MCFC發(fā)電系統(tǒng)的技術(shù)開發(fā)始于1981年度的月光計劃,該計劃圍繞開發(fā)1千瓦級發(fā)電機組這個目標展開了對MCFC燃料、電極等的開發(fā)。該開發(fā)研究進展順利,從1984年開始,進而對10千瓦級發(fā)電機組進行研究開發(fā)。1986年,日立、東芝、富士電機、三菱電機、IHI分別對5臺10千瓦級機組進行發(fā)電試驗,其結(jié)果是輸出功率為10千瓦,初期性能為電池電壓0.75伏,電流密度150毫安/平方厘米。
1987年起,日本在對1000千瓦級實驗電場(外部改質(zhì)型)進行主要開發(fā)的同時,對100千瓦級發(fā)電機組以及1000千瓦級機組的設(shè)備的開發(fā)研究也取得了進展。1993年度,日立、IHI的2臺100千瓦級外部改質(zhì)型機組和三菱電機的1臺30千瓦級內(nèi)部改質(zhì)型機組開始試驗發(fā)電運行。其試驗結(jié)果以及1994年度進行的5-25千瓦級機組的試驗結(jié)果表明,電池電壓0.8伏,電流密度達15毫安/平方厘米,單位時間內(nèi)的劣化率小于1%。
在此基礎(chǔ)上,1994年度起開始著手開發(fā)1000千瓦級試驗工廠。1995年10月在中部電力(株)川越發(fā)電所開始建廠,確立了1000千瓦級實用化發(fā)電系統(tǒng)試驗工廠的基本系統(tǒng),對現(xiàn)有的事業(yè)用燃料電池電廠的運行進行評價,計劃1999年開始試驗運行,其目標為:燃料利用率為80%,千小時電池的劣化率小于1%,初期性能為:電池電壓大于0.8伏,電流密度1500毫安/平方厘米,計劃試驗運行5000小時。
為使電池實用化,在上述研究開發(fā)的基礎(chǔ)上,還進行了機組長壽命化研究,計劃連續(xù)實驗運行4萬小時,每千小時單位劣化率小于0.25%。除此之外,還在開發(fā)200千瓦級內(nèi)部改質(zhì)型燃料電池發(fā)電系統(tǒng)。
美國能源部和美國電力研究所,正在積極開發(fā)MCFC。美國ERC公司開發(fā)的2兆瓦級內(nèi)部改質(zhì)型機組發(fā)電系統(tǒng)于1996年5月在圣克拉拉開始試驗運行。MC-power公司開發(fā)的250千瓦級外部改質(zhì)型機組發(fā)電系統(tǒng),1997年2月起在圣迭戈開始試運行。
在歐洲,MCFC作為共同項目正在研究開發(fā),取得了一些進展,其主要項目如下:
①高級DIC-MCFC發(fā)展計劃(1996-1998年)。荷蘭、英、法、瑞典等國參加研究,歐洲在市場分析、系統(tǒng)開發(fā)以及內(nèi)部改質(zhì)型機組的開發(fā)等方面取得進展。
②ARGE項目(1990年起計劃10年內(nèi)完成)。德、丹麥參加,并在內(nèi)部改質(zhì)型發(fā)電系統(tǒng)的開發(fā)上取得進展。
③MOLCARE。由意、西班牙參加,并在外部改質(zhì)型發(fā)電系統(tǒng)開發(fā)上取得進展。
韓國從1993年起開始開發(fā)MCFC,1997年以開發(fā)100千瓦外部改質(zhì)型發(fā)電系統(tǒng)為目標,開始了第二階段研究開發(fā)工作。
3.固體電解質(zhì)型燃料電池(SOFC)
作為SOFC開發(fā)的基礎(chǔ)科學(xué)離子學(xué),其開發(fā)歷史很長,日、美、德等國已有30多年的開發(fā)史。日本工業(yè)技術(shù)院電子技術(shù)綜合研究所從1974年起就開始研究SOFC,1984年進行了500瓦發(fā)電試驗(最大輸出功率為1.2千瓦)。美國西屋公司從1960年起開始開發(fā)SOFC,1987年該公司與日本東京煤氣、大阪煤氣共同開發(fā)出3千瓦熱自立型電池模塊,在國內(nèi)外掀起了開發(fā)SOFC的。
日本新陽光計劃中,以產(chǎn)業(yè)技術(shù)綜合開發(fā)機構(gòu)(NEDO),為首,從1989年起開始開發(fā)基礎(chǔ)制造技術(shù),對數(shù)百千瓦級發(fā)電機組進行測試。1992年起,富士電機綜合研究所和三洋電機在共同研究開發(fā)數(shù)千瓦級平板型模塊基礎(chǔ)上,還組織了7個研究機構(gòu)積極開發(fā)高性能、長壽命的SOFC材料及其基礎(chǔ)技術(shù)。
除此之外,三菱重工神戶造船所與中部電力合作,共同開發(fā)平板型SOFC,1996年創(chuàng)造了5千瓦級模塊成功運行的先例。同時,在圓筒橫縞型電池領(lǐng)域中,1995年三菱重工長崎造船所在電源開發(fā)共同研究中,采用圓筒橫縞型電池,開發(fā)出10千瓦級模塊,成功地進行了500小時試運行,之后又于1996年開發(fā)了2.5千瓦模塊,并試運行1000小時。TOTO與九州電力共同開發(fā)全濕式圓筒縱縞型電池,1996年起,開始開發(fā)1千瓦級模塊。同時,在日本以大學(xué)與國立研究所為首的許多研究機構(gòu)在積極開發(fā)SOFC。
美國西屋公司在能源部的支持下,開始開發(fā)圓筒縱縞型電池。東京煤氣和大阪煤氣對25千瓦級發(fā)電及余熱供暖系統(tǒng)進行的共同測試表明,截至1997年3月,已成功運行了約1.3萬小時,其間已經(jīng)過11次啟動與停機,千小時單位電池的劣化率小于0.1%,可見其技術(shù)已非常成熟。西屋公司除計劃在1998年與荷蘭、丹麥共同進行100千瓦級模塊運行外,為降低制造成本,還在研究開發(fā)濕式電池制造技術(shù)。美國Allied-signal、SOFCo、Z-tek等公司在開發(fā)平板型SOFC上取得進展,目前正對1千瓦級模塊進行試運行。
在歐洲,德國西門子公司在開發(fā)采用合金系列分離器的平板型SOFC,1995年開發(fā)出10千瓦(利用氧化劑中的氧,若在空氣中則為5千瓦)模塊,1996年開發(fā)出7.2千瓦模塊(利用氧化劑中的空氣)。
奔馳汽車制造公司在開發(fā)陶瓷系列分離器式平板型SOFC上取得進展,1996年對2.2千瓦模塊試運行6000小時。瑞士的薩爾澤爾公司在積極開發(fā)家庭用SOFC,目前已開發(fā)出1千瓦級模塊。今后,德國還計劃在特蒙德市進行7千瓦級發(fā)電及余熱供暖系統(tǒng)現(xiàn)場測試。
在此基礎(chǔ)研究上,以英、法、荷等國的大學(xué)和國立研究所為中心的研究機構(gòu),正在積極研究開發(fā)低溫型(小于800℃)SOFC材料。
4.固體高分子型燃料電池(PEFC)
日本開發(fā)固體高分子膜的單位有旭化成、旭哨子、Japangore-tex等,開發(fā)改質(zhì)器以及電極催化媒體的機構(gòu)有田中貴金屬、大阪煤氣等。在開發(fā)汽車燃料電池方面,豐田制造出甲醇改質(zhì)型燃料電池汽車(1997年),同時三菱電機、馬自達也在著手開發(fā)汽車燃料電池。
在供電及余熱供暖系統(tǒng)方面,PEFC排熱溫度較低,為70℃左右,在熱利用上有所限制,與其他類型燃料電池相比,目前只開發(fā)小型系統(tǒng)。東芝(30千瓦)、三洋電機(數(shù)千瓦)、三菱重工和東京煤氣(5千瓦)、富士電機和關(guān)西電力(5千瓦)等公司在開發(fā)以天然氣和甲醇為燃料的電池系統(tǒng),同時,三洋電機在開發(fā)1千瓦級氫燃料便攜式商品化電源,三菱重工在開發(fā)特殊用途(無人潛水艇用)燃料電池。
PEFC主要作為汽車動力電源在開發(fā)。但在汽車上燃料的搭載方式各種各樣,有高壓氫、液化氫和甲醇等。這些燃料各具長短,目前還未能確定最適方式。
德國奔馳與加拿大BPS在進行共同開發(fā),它們開發(fā)的搭載氫燃料、小底盤汽車在試運行。除此之外它們還共同開發(fā)甲醇燃料電池汽車。若在降低成本、提高運行性能等方面再取得一些進展,電池汽車就有望走向市場。
美國克萊斯勒、通用、福特三公司協(xié)力合作,計劃到2000年開發(fā)出輸出50千瓦、輸出密度1千瓦/公斤的燃料電池。另外,BMW、Rover和西門子三家公司也在開展共同開發(fā)。
關(guān)鍵詞:電力電子;能量管理系統(tǒng);電能質(zhì)量控制
中圖分類號:TU852文獻標識碼:A文章編號:1007-9599 (2010) 14-0000-01
Power Electronics and New Energy Power Generation Technology
Yang Lin
(Institute of Electrical Engineering,Northwest University for Nationalities,Lanzhou730030,China)
Abstract:This paper discusses several new forms of energy generation and integrated power supply system transformation,control,intelligence management and safety issues,and hope in the future development of new energy power,we can overcome difficulties and achieve electronic power of new development.
Keywords:Power electronics;Energy management system;Power quality control
我們已進入21世紀,這是一個全新的時代,經(jīng)濟的高速發(fā)展給人們的生活帶來了很多的便利,但隨之而來的卻是能源的耗竭,原本豐富的能源如今已變得匱乏,并危及到人們未來的生產(chǎn)生活。與此同時,毫無顧忌的能源利用還造成了大氣的嚴重污染,從而又引發(fā)能源危及,這樣的惡性循環(huán)會直接危及到人類的發(fā)展,甚至威脅人類的健康和繁衍。因此,開拓新能源,減少能量源浪費成為當今世界最為關(guān)注的話題。
一、新能源的發(fā)電方式
(一)太陽能發(fā)電
太陽能發(fā)電開始于上世紀50年代,當時,第一塊實用的硅太陽電池研制成功,如今,太陽能發(fā)電技術(shù)已經(jīng)經(jīng)歷了半個世紀的發(fā)展,其技術(shù)也在日益成熟。目前,占主流的太陽電池仍然是硅太陽電池,主要分為單晶硅太陽電池、多晶硅太陽電池和非晶硅太陽電池。典型的太陽能供電系統(tǒng)結(jié)構(gòu)如圖1所示,太陽電池陣列進行光電轉(zhuǎn)換,把太陽能變?yōu)殡娔?,再由功率變換器將太陽電池輸入到直流電中,最后轉(zhuǎn)換成用戶所要使用的電源模式。根據(jù)用戶的需求,功率變換器可以選擇直流斬波器進行DC/DC變換,或采用逆變器進行DC/AC變換。而功率變換裝置還應(yīng)包括蓄電池系統(tǒng),主要是為了平衡電流。如果太陽光充足,可以利用太陽能,并利用蓄電池充電;如果在夜晚或者陽光不充足時,就可以使用蓄電池供電。
(二)風(fēng)力發(fā)電
如今,風(fēng)力的主要運用方式就是風(fēng)力發(fā)電,它的發(fā)展速度最快,也最受全世界關(guān)注。風(fēng)力發(fā)電主要有3種運轉(zhuǎn)方式:
1.獨立運行方式,利用一臺小型的風(fēng)力發(fā)電機向需要的用戶提供電能,它還可以通過蓄電池充電,預(yù)防無風(fēng)時影響發(fā)電效果;
2.風(fēng)力發(fā)電與其他發(fā)電方式相結(jié)合的聯(lián)合供電方式,主要向交通不便或偏遠山區(qū)供電,以及地廣人稀的草原牧場提供電力;
3.并網(wǎng)型風(fēng)力發(fā)電運行方式,將風(fēng)力發(fā)電網(wǎng)安裝在條件較好的地區(qū),常常是一處風(fēng)場安裝幾十臺甚至幾百臺風(fēng)力發(fā)電機,這也是風(fēng)力發(fā)電的主要發(fā)展方向。風(fēng)力發(fā)電機組在不同風(fēng)速的條件下運行,其發(fā)電機輸出的電壓的幅值和頻率是變化的,所以,通常要配置電力電子功率變換器,通過這種裝置控制電流,保證輸出的電壓是平衡穩(wěn)定的。
(三)燃料電池發(fā)電系統(tǒng)
燃料電池(Fuel Cell)是將反應(yīng)物如氫氣等的化學(xué)能直接轉(zhuǎn)化為電能的電化學(xué)裝置。它通過燃料(通常是氫氣)和氧氣結(jié)合所發(fā)生的光電反應(yīng)來發(fā)電。燃料電池發(fā)展了這么久,根據(jù)電介質(zhì)的不同,主要分為5種燃料電池:堿性燃料電池(Alkaline Fuel Cell,AFC);質(zhì)子交換膜燃料電池(Proton ExchangeMembrane Fuel Cell,PEMFC);磷酸燃料電池(Phosphoric Acid Fuel Cell,PAFC);熔鹽燃料電池(Molten Car-bonate Fuel Cell,MCFC);固體氧化物燃料電池(Solid Oxide Fuel Cell,SOFC)。
實際上,燃料電池也有其優(yōu)點,例如:發(fā)電效率高:發(fā)熱少;噪音低,污染?。还β拭芏雀?。目前,燃料電池發(fā)電主要集中在以下幾個方面:燃料電池特性研究;燃料電池發(fā)電系統(tǒng)結(jié)構(gòu)和高效功率變換的研究;能量管理技術(shù);孤島檢測和保護技術(shù),并網(wǎng)電流控制;并網(wǎng)運行與獨立運行之間的無縫切換控制技術(shù)。
燃料電池所輸出的電壓會隨著電壓的變化,發(fā)生較大范圍的變化。燃料電池的輸出電壓在負載發(fā)生突變時還要經(jīng)過一段時間才能停止反應(yīng),對于質(zhì)子交換模燃料電池響應(yīng)延遲達2秒。因此,燃料電池一般與負荷動態(tài)的具體要求無法很好的匹配。
二、電力儲能技術(shù)
可再生能源發(fā)電裝置所產(chǎn)生的電能主要還存在無法預(yù)測的周期性變化,例如風(fēng)能、光伏發(fā)電等,如果將其電能直接輸入普通電網(wǎng),將會對電流帶來不良影響,而電力儲備裝置就可以平衡能源發(fā)電輸入與電網(wǎng)之間的矛盾。電力儲能技術(shù)有蓄水蓄能、壓縮空氣儲能、飛輪儲能、電池儲能等它們都各具特點,各有優(yōu)勢,但它們的正常運行主要是依靠電子電力技術(shù)。
蓄水儲能與壓縮空氣儲能主要是對電力高峰期進行調(diào)節(jié),但是對地理條件的要求較高。電池儲能的精密性高,需要在技術(shù)成熟的條件下進行,理論上可以用于電力調(diào)峰,單電池使用壽命有效,這成為蓄電技術(shù)的難點。飛輪儲能的儲能量有限,運行復(fù)雜,一般用于電能質(zhì)量調(diào)節(jié)。
三、電能質(zhì)量控制
(一)電源諧波檢測和分析技術(shù)
諧波的測量和分析都是以思想諧波治理為前提條件的,精準的諧波測量和分析可以為諧波的治理提供準確的依據(jù)。自提出快速傅里葉變換算法(FFT)以來,基于傅里葉變換的諧波測量得到了普遍應(yīng)用。然而基于傅里葉變換的諧波測量要求整周期同步采樣,不然就會嚴重影響其效果。因此,怎樣減少因同步偏差而引起的測量誤差成為電子電力技術(shù)人員迫切要解決的難題。
(二)電能質(zhì)量控制和管理
首先,電能質(zhì)量的控制和管理主要包含功率因數(shù)校正和濾波器設(shè)計,由于傳統(tǒng)的無源濾波器體積和重點都很大,還需要對不同的頻率進行設(shè)計,而功率因數(shù)較技術(shù)正是提高功率因數(shù)和降低諧波污染的重要途徑。如今,電能質(zhì)量控制和管理的研究重點在與PFC控制技術(shù)上,比如:單開關(guān)、多開關(guān)以及軟開關(guān)三相PFC電路的研制,軟開關(guān)技術(shù)與PFC技術(shù)的融合已經(jīng)成為未來的發(fā)展趨勢,雖然目前的PFC產(chǎn)品受到功率的限制,但應(yīng)用于分布式新能源發(fā)電系統(tǒng)卻是重要機遇。
四、總結(jié)
綜上所述,隨著科技的發(fā)展,新能源的開拓和使用技術(shù)越來越成熟,但是,要真正做好新能源發(fā)電技術(shù),還需要從解決先存的各種問題,因此,電子電力技術(shù)人員應(yīng)在在電氣、電子、控制和信息等工程技術(shù)領(lǐng)域加強合作研究,通過系統(tǒng)集成和技術(shù)融合,實現(xiàn)各種技術(shù)的突破,我相信,我們一定可以克服各種困難,迎來新能源造福人類的燦爛明天。
參考文獻:
[1]Rechten H.可再生能源技術(shù)[A].中美清潔能源技術(shù)論壇論文集[C],2001
[2]湯天浩.新能源與變換:系統(tǒng)集成、技術(shù)融合及應(yīng)用展望[J].電源技術(shù)學(xué)報,2004,2,1
[3]李俊峰,高虎,王仲穎.中國風(fēng)電發(fā)展報告[M].北京:中國環(huán)境科學(xué)出版社,2008
[4]戴慧珠,陳默子,王偉勝.中國風(fēng)電發(fā)展現(xiàn)狀及有關(guān)技術(shù)服務(wù)[J].中國電力,2005,38,1
【關(guān)鍵詞】燃料電池;原理;分類;應(yīng)用
0.引言
時至今日,世界經(jīng)濟大體上仍然是化石燃料依賴型的,石油、煤和天然氣占世界初級能源消費總量的85%左右,剩下的部分主要是水電和核電,真正的可再生清潔能源如風(fēng)能、太陽能等所占比例不到3%。世界能源需求仍在以1.5%~2%的年率增長,而地質(zhì)學(xué)家預(yù)測說,石油和天然氣價格將大幅度上升,再也不會回落。
燃料電池的出現(xiàn)與發(fā)展,給便攜式電子設(shè)備帶來一場深刻的革命,并且還會波及到汽車業(yè),住宅,以及社會各方面的集中供電系統(tǒng)。在21世紀中它將會把人類由集中供電帶進一種分散供電的新時代。燃料電池供電,沒有二氧化碳的排放,可減輕溫室效應(yīng)使全球氣候變暖問題,它解決了火力發(fā)電使全球環(huán)境污染的問題,它是一個純正的綠色清潔能源。
1.燃料電池的原理
1.1 燃料電池的組成和工作原理
燃料電池的基本組成:陽極、陰極、電解質(zhì)和外電路。燃料電池中的電解質(zhì)有不同的種類。燃料電池是靠氫氧結(jié)合成水的反應(yīng)來發(fā)電的,因而不會產(chǎn)生氮氧化物(NOX)和碳氫化合物(HC)等易對空氣造成污染的物質(zhì)。它由三部分組成:陰極、陽極和電解液。
燃料電池有著幾個獨特的性質(zhì):
(1)燃料電池在工作時必須有能量(燃料)輸入,才能產(chǎn)出電能。
(2)燃料電池所能夠產(chǎn)生的電能只和燃料的供應(yīng)有關(guān),只要供給燃料就可以產(chǎn)生電能,其放電是連續(xù)進行的。
(3)燃料電池本體的質(zhì)量和體積并不大,但需要一套燃料儲存裝置或燃料轉(zhuǎn)換裝置和附屬設(shè)備才能獲得氫氣,而這些燃料儲存裝置或燃料轉(zhuǎn)換裝置和附屬設(shè)備的質(zhì)量和體積遠遠超過燃料電池本身。
1.2 燃料電池中的催化作用
燃料電池中的電催化作用是用來加速燃料電池化學(xué)反應(yīng)中電荷轉(zhuǎn)移的一種作用,一般發(fā)生在電極與電解質(zhì)的分界面上。 催化劑是一類可產(chǎn)生電催化作用的物質(zhì)。電催化劑可以分別用于催化陽極和陰極反應(yīng)。這種分離的催化特征,使得人們可以更好地優(yōu)選不同的催化劑。
評價催化劑的主要技術(shù)指標為穩(wěn)定性、電催化活性、電導(dǎo)率和經(jīng)濟性。
2.燃料電池的特點
由于燃料電池能將燃料的化學(xué)能直接轉(zhuǎn)化為電能,因此,它沒有像通常的火力發(fā)電機那樣通過鍋爐、汽輪機、發(fā)電機的能量形態(tài)變化,可以避免中間的轉(zhuǎn)換的損失,達到很高的發(fā)電效率。同時還有以下一些特點:
不管是滿負荷還是部分負荷均能保持高發(fā)電效率;不管裝置規(guī)模大小均能保持高發(fā)電效率; 具有很強的過負載能力; 通過與燃料供給裝置組合的可以適用的燃料廣泛;用天然氣和煤氣等為燃料時,NOX及SOX等排出量少,環(huán)境相容性優(yōu)。
此外,燃料電池的能量轉(zhuǎn)換效率高,不受卡諾效率限制;清潔、環(huán)保。燃料電池不需要鍋爐、汽輪機等大型設(shè)備、沒有SOx、NOx氣體和固體粉塵的排放;可靠性和操作性良好,噪聲低;所用燃料廣泛,占地面積小,建廠具有很大靈活性。
3.燃料電池的分類
燃料電池可依據(jù)其工作溫度、所用燃料的種類和電解質(zhì)類型進行分類。按照工作溫度,燃料電池可分為高、中、低溫型三類。按燃料來源,燃料電池可分為直接式燃料電池(如直接甲醇燃料電池),間接式燃料電池(如甲醇通過重整器產(chǎn)生氫氣,然后以氫氣為燃料電池的燃料)和再生類型進行分類。依據(jù)電解質(zhì)的不同,可將燃料電池分為堿性燃料電池(AFC)、直接甲醇燃料電池(DMFC)、熔融碳酸鹽燃料電池(MC
FC)、固體氧化物燃料電池(SOFC)及質(zhì)子交換膜燃料電池(PEMFC)等。
3.1直接甲醇燃料電池
直接甲醇燃料電池是以甲醇為燃料,通過與氧結(jié)合產(chǎn)生電流的,優(yōu)點是直接使用甲醇,省去了氫的生產(chǎn)與存儲。其電化學(xué)轉(zhuǎn)化過程又可分為兩種方式,一種是直接燃料電池,另一種是間接燃料電池。直接燃料電池主要是甲醇在陽極被電解為氫和二氧化碳,氫通過質(zhì)子膜到陰極與氧氣反應(yīng)并同時產(chǎn)生電流。間接燃料電池是先將甲醇進行煉解或重整得到氫,然后再由氫和氧通過質(zhì)子膜電解槽反應(yīng)而獲得供給汽車動力的電能。這種燃料電池以甲醇為能量來源,手機,筆記本電腦將不再用充電。
3.2固體氧化物燃料電池
固體氧化物燃料電池采用固體氧化物作為電解質(zhì),除了高效,環(huán)境友好的特點外,它無材料腐蝕和電解液腐蝕等問題;在高的工作溫度下電池排出的高質(zhì)量余熱可以充分利用,使其綜合效率可由50%提高到70%以上; 它的燃料適用范圍廣,不僅能用H2,還可直接用CO、天然氣(甲烷)、煤汽化氣,碳氫化合物、NH3、H2S等作燃料。這類電池最適合于分散和集中發(fā)電。
3.3堿性燃料電池
再生氫氧燃料電池將水電解技術(shù)(電能+2H2O2H2+O2)與氫氧燃料電池技術(shù)(2H2+O2H2O+電能)相結(jié)合 ,氫氧燃料電池的燃料 H2、氧化劑O2可通過水電解過程得以“再生”, 起到蓄能作用??梢杂米骺臻g站電源。采用氫氧化鉀溶液作為電解液。這種電解液效率很高(可達60-90%),但對影響純度的雜質(zhì),如二氧化碳很敏感。因而運行中需采用純態(tài)氫氣和氧氣。這一點限制了將其應(yīng)用于宇宙飛行及國際工程等領(lǐng)域。
3.4質(zhì)子交換膜燃料電池
燃料電池工程中心研究雙效催化劑和雙效氧電極的制備方法,研制薄層電極并制備膜電極三合一組件,降低電極鉑擔量。目前電極的鉑擔量已降至0.02mg/cm2。同時進行固體電解質(zhì)的水電解技術(shù)開發(fā),已掌握水電解用膜電極的制備技術(shù)。
3.5熔融碳酸鹽燃料電池
熔融碳酸鹽燃料電池是一種高溫電池(600~700℃),具有效率高(高于40%)、噪音低、無污染、燃料多樣化(氫氣、煤氣、天然氣和生物燃料等)、余熱利用價值高和電池構(gòu)造材料價廉等諸多優(yōu)點,是下一世紀的綠色電站。
4.燃料電池的應(yīng)用
燃料電池技術(shù)因具備低污染、高能源轉(zhuǎn)換效率的特性,更能滿足人類高效、環(huán)保的需求。它具有更高的能源密度。緊急備用發(fā)電機、住宅用熱電共生系統(tǒng)、UPS、分布式發(fā)電系統(tǒng)、軍事國防、太空與運輸工具領(lǐng)域、機器人、筆記型計算機、PDA、手機等便攜電子產(chǎn)品、便攜電源、搬運工具、電動輔助/代步車等。采用極薄的塑料薄膜作為其電解質(zhì)。這種電解質(zhì)具有高功率一重量比和低工作溫度。是適用于固定和移動裝置的理想材料。
質(zhì)子交換膜燃料電池以磺酸型質(zhì)子交換膜為固體電解質(zhì),無電解質(zhì)腐蝕問題,能量轉(zhuǎn)換效率高,無污染,可室溫快速啟動。質(zhì)子交換膜燃料電池在固定電站、電動車、軍用特種電源、可移動電源等方面都有廣闊的應(yīng)用前景,尤其是電動車的最佳驅(qū)動電源。它已成功地用于載人的公共汽車和奔馳轎車上。
5.小結(jié)
高效、潔凈的燃料電池必將在未來的高效、清潔發(fā)電技術(shù)中占有一席之地。但是,資金、技術(shù)、觀念、基礎(chǔ)設(shè)施上還有許多需要克服的困難。油價飆升、電價太貴,燃料電池成為未來家庭能源供應(yīng)相對便宜的選擇,也是目前最令人滿意的解決方案。在固定電站、電動車、軍用特種電源、可移動電源等方面都有廣闊的應(yīng)用前景。 [科]
【參考文獻】
[1]石新軍.燃料電池的應(yīng)用和發(fā)展.現(xiàn)代物理知識,2006,1.
關(guān)鍵詞:新能源;汽車;發(fā)展現(xiàn)狀
一、新能源汽車的誕生背景
1.1能源緊缺、石油價格高昂
石油能源將出現(xiàn)供需矛盾,汽車使用成本越來越高,尋找既綠色環(huán)保又低廉價格的能源成了當務(wù)之急,新能源汽車便在這種情形下走進了歷史舞臺。
1.2環(huán)保問題
隨著時代的發(fā)展,大家越來越意識到:維護生態(tài)平衡,保護環(huán)境是根本性問題。汽車尾氣排放標準的高要求使得各大汽車廠商采取各種方法以提高排放質(zhì)量,減少污染物,新能源汽車便進入了人們的視野。
二、新能源汽車的種類
2.1引言
新能源汽車又稱代用燃料汽車,包括全部或部分使用非石油燃料的汽車。根據(jù)《新能源汽車生產(chǎn)企業(yè)及產(chǎn)品準入管理規(guī)則》[4]的規(guī)定,新能源汽車包括混合動力汽車(HEV)、純電動汽車(BEV)、燃料電池電動汽車(FCEV) ,氫能源動力汽車、燃氣汽車以及其他新能源汽車等各類別產(chǎn)品。
2.2新能源汽車的種類
2.2.1燃氣汽車:其排放污染大大低于以油為燃料的汽車;抗爆震性好,可以提高動力性能;燃料以氣態(tài)進入氣缸,燃燒較充分,熱效率高;采取了多項有效的技術(shù)措施和設(shè)施,使燃氣使用起來更安全;天然氣資源豐富,價格便宜。
2.2.2燃料電池汽車:利用氫氣等燃料與氧氣在催化劑的作用下經(jīng)電化學(xué)反應(yīng)產(chǎn)生的電能為主要動力源的汽車。燃料電池的反應(yīng)不經(jīng)過燃燒過程,能量轉(zhuǎn)化效率高;并且它的排放主要是水,不產(chǎn)生有害物質(zhì)。
2.2.3純電動汽車:純電動汽車已發(fā)展到較成熟階段[5-6]。在各國政府的大力支持下,鋰離子電池技術(shù)迅猛發(fā)展,己經(jīng)成為電動汽車車用動力電池的主要發(fā)展方向[7]。
2.2.4混合動力汽車:指由多于一種的能量轉(zhuǎn)換器能提供驅(qū)動動力的混合型電動汽車,即使用蓄電池和副能量單元的電動汽車,其副能量單元實際上是一部燃燒某種燃料的原動機或動力發(fā)電機組[8]。
2.2.5氫能源動力汽車; 以氫為主要能量作為移動的汽車,行車路遠,使用的壽命長,最大的優(yōu)點是不污染環(huán)境。雖然現(xiàn)在技術(shù)原因,在氫氣的提取上有嚴重的阻礙,但是由于氫氣燃燒后釋放的完全沒有污染的水,因此氫燃料電池汽車還是非常受重示。
2.2.6太陽能汽車:顧名思義,太陽能汽車就是使用太陽能電池把光能轉(zhuǎn)化成電能并以此為驅(qū)動能源的汽車。太陽能發(fā)電在汽車上的應(yīng)用,將能夠有效降低全球環(huán)境污染。直接采用太陽能為能源,間接采用電能作為能源,可有效的節(jié)約化石燃料。
三、新能源汽車發(fā)展現(xiàn)狀
3.1現(xiàn)狀存在的問題:
新能源汽車產(chǎn)業(yè)發(fā)展戰(zhàn)略不是很清晰;核心技術(shù)不甚成熟;發(fā)展項目重疊;基礎(chǔ)配套設(shè)施不完善;價格昂貴;民眾的環(huán)保理念知之甚少;補給能源的儲存、生產(chǎn)問題;電動汽車的續(xù)航問題。
3.2國內(nèi)外的發(fā)展:
(1) 據(jù)我國發(fā)展新能源汽車以來,2001 年, 國家把新能源汽車研究列入“十一五” 期間的 “863” 重大研究課題, 同時規(guī)劃出了以汽油車為基點,向氫動力汽車大力發(fā)展的戰(zhàn)略。
(2) 美國始終致力于提高乙醇以及生物柴油等可再生資源使用量。
(3) 日本為推進新能源汽車以及環(huán)保汽車,從 2009年 4 月1日起日本實施了 “綠色稅制”。
(4) 歐盟在 2003 年了 《歐洲未來氫能圖景》 ,并制訂了 《歐盟氫能發(fā)展路線圖》。
(5) 國務(wù)院決定免征新能源汽車車輛購置稅,電解液已經(jīng)實現(xiàn)國產(chǎn)化[14]。
(6) 成本較之前已經(jīng)逐步下降,極大的提升了競爭優(yōu)勢。
結(jié)論:
目前,中國汽車產(chǎn)業(yè)出現(xiàn)了發(fā)展節(jié)能汽車和發(fā)展新能源汽車相結(jié)合,能源多元化、動力電氣化、排放潔凈化必將推動中國新能源汽車迅速發(fā)展,中國有望在不久的將來將成為新能源汽車的研究中心。(作者單位:南京農(nóng)業(yè)大學(xué))
參考文獻:
[1]中國新能源汽車產(chǎn)業(yè)研究.高銘澤.2013-04-01,吉林大學(xué)碩士論文
[2]李大元.低碳經(jīng)濟背景下我國新能源汽車產(chǎn)業(yè)發(fā)展的對策研究[J].經(jīng)濟縱橫,2011,(2).
[3]我國工業(yè)和信息化部,《新能源汽車生產(chǎn)企業(yè)及產(chǎn)品準入管理規(guī)則》,2009.
[4]鄧平.快速充電技術(shù),圓你電動客車商業(yè)化之夢[J].人民公交,2013,3:95-98.
[5]崔淑娟.燃料電池汽車的關(guān)鍵技術(shù)[J].汽車工程師,2009,9:15:17.
[6]盧世剛.劉莎.電動汽車車用動力電池的主要發(fā)展方向[J].新材料產(chǎn)業(yè),2005,4:49-54.
本書共有46章:1.云層狀況對太陽輻射質(zhì)量的比較研究;2.以滿足基本負荷為目標的可再生能源集成系統(tǒng)探索;3.可變混合物的有機朗肯循環(huán)性能研究4.以雙地熱為基礎(chǔ)的集成制氫系統(tǒng)測評;5.基于兩種可再生能源的多能源系統(tǒng)遺傳算法優(yōu)化;6.綜合能源系統(tǒng)的性能評估;7.兩段式熱泵干燥系統(tǒng)的性能評估;8.基于核能的混合硫循環(huán)和使用HEEP方法的高溫蒸汽電解系統(tǒng)比較評估;9.固體氧化物燃料電池和基于生物質(zhì)氣化微型燃氣輪機的熱力學(xué)分析;10.工作液可變的朗肯循環(huán)能量分析;11.熱化學(xué)儲能系統(tǒng):設(shè)計,評估和基于充電溫度的參數(shù)研究;12.季節(jié)性分層熱能儲藏系統(tǒng)的熱力學(xué)評估;13.基于太陽能的微型熱電發(fā)電系統(tǒng)發(fā)展;14.單效吸收式儲能器的瞬態(tài)過程分析;15.全球變暖與建筑物形貌對地源熱泵系統(tǒng)性能的影響;16.拉賈斯坦邦的聚光太陽能發(fā)電現(xiàn)狀;17.帶有貯熱水箱的太陽能噴射式制冷系統(tǒng)動態(tài)性能分析;18.宿舍供電用光伏太陽能電池和燃料電池聯(lián)合系統(tǒng);19.低能耗示范用住宅的空氣源熱泵和太陽能熱聯(lián)合供暖系統(tǒng)研究;20.零下低溫區(qū)的太陽能熱水器;21.恒定輸入功率的定日鏡場中央接收器系統(tǒng)建模;22.無吸收器單通道太陽能空氣集熱器;23.帶有短距散射器的太陽能發(fā)電站;24.甘油水相化可再生能源制氫與水滑石衍生物提取銅鎳催化劑的利用;25.混合結(jié)構(gòu)成分與官能團的熱解條件;26.阿爾及利亞太陽能分布圖;27.帶有真空管太陽能集熱器并集成加濕和除濕功能的太陽能海水淡化系統(tǒng)研究;28.海上風(fēng)電場的選址優(yōu)化;29.小型風(fēng)力發(fā)電機葉片設(shè)計;30.基于液體浸沒等離子體的籠形水合物變形制氫方法;31.伊朗家用、商用和農(nóng)業(yè)部門中基于風(fēng)能的便利分布式發(fā)電選擇系統(tǒng);32.麥克默里堡住宅樓地熱空間加熱系統(tǒng)的綜合監(jiān)測;33.地熱系統(tǒng)中的熱傳輸特性分析;34.阿爾及利亞地熱應(yīng)用前景分析;35.垂直地埋管換熱器的季節(jié)性熱流變化分析;36.面向家庭供暖與供冷的垂直管道地熱泵系統(tǒng);37.地源熱泵系統(tǒng)中能源樁熱響應(yīng)試驗分析;38.縱向和橫向片式散熱器的性能比較;39.新加坡能源系統(tǒng)的建模分析;40.低溫熱源驅(qū)動的發(fā)電供熱集成系統(tǒng)分析;41.壓縮天然氣和柴油功能的垃圾收集車可靠性評估;42.厭氧混合堆中垃圾滲濾液的厭氧處理和沼氣生產(chǎn)系統(tǒng);43.對帕多瓦城市熱島的實驗調(diào)查;44.微波增強型橡膠樹熱解;45.提高水電雙供廠的裝機容量和效率;46.水電雙供廠的建模仿真分析。
本書第1作者Ibrahim Dincer是安大略理工大學(xué)機械工程系教授,也是工程和應(yīng)用科學(xué)學(xué)院的項目負責人。他獨自撰寫或合作撰寫過幾十本書,發(fā)表過的期刊和會議論文被引用超過1000次,還發(fā)表過很多技術(shù)報告。他曾多次主持國內(nèi)與國際會議、擔任會議主席。他還參與了很多國際知名會議的初創(chuàng)工作,包括國際能源與環(huán)境專題討論會等。他曾經(jīng)擔任過300余次主題演說,還擔任著多種國際期刊的主編和編輯,如《國際能源研究期刊》,《國際燃燒熱力學(xué)期刊》,以及《全球變暖研究》等。
本書采用獨特的方式,融合了最新的技術(shù)信息、研究成果和成功示范應(yīng)用,旨在吸引大量工程師、學(xué)生、工程實踐人員、科學(xué)家和研究人員,為他們展現(xiàn)可持續(xù)能源技術(shù)的最新發(fā)展。
寧圃奇,博士,研究員
(中國科學(xué)院電工研究所)
Puqi Ning,Associate Professor
(Institute of Electrical Engineering,CAS)Giovanni Petrecca
Energy Conversion and
Management
2014
http:///book/
10.1007/978-3-319-06560-1
[論文摘要]:通信電源是向通信設(shè)備提供交直流電的電能源,是整個通信電信網(wǎng)的能量保證。通信電源系統(tǒng)由交流供電系統(tǒng)、直流供電系統(tǒng)和相應(yīng)的保護系統(tǒng)構(gòu)成。通信電源系統(tǒng)的設(shè)備多,分布廣,不僅單個電源設(shè)備的可靠性會影響系統(tǒng)的可靠性,電源系統(tǒng)的總體結(jié)構(gòu)也會對自身的可靠性造成很大的影響。
一、通信電源的發(fā)展現(xiàn)狀
(一)供電系統(tǒng)的現(xiàn)狀
通信電源是通信系統(tǒng)必不可少的重要組成部分,其設(shè)計目標是安全、可靠、高效、穩(wěn)定、不間斷地向通信設(shè)備提供能源。通信電源必須具備智能監(jiān)控、無人值守和電池自動管理等功能,從而滿足網(wǎng)絡(luò)時代的需求。通信電源系統(tǒng)由交流配電、整流柜、直流配電和監(jiān)控模塊組成。
(二)通信電源設(shè)備的更新?lián)Q代
近年來,隨著技術(shù)的進步,特別是功率器的更新?lián)Q代,新型電磁材料的不斷使用,功率變換技術(shù)的不斷改進,控制方法的不斷進步,以及相關(guān)學(xué)科的技術(shù)不斷融合,通信電源在系統(tǒng)的可靠性、穩(wěn)定性,電磁兼容性,消除網(wǎng)側(cè)電流諧波、提高電能利用率、降低損耗、提高系統(tǒng)的動態(tài)性能等等方面都取得長足的進步。
(三)現(xiàn)行通信電源的電路模型和控制技術(shù)
目前通信電源的變換電路拓撲結(jié)構(gòu)主要采用雙單端電路,半橋電路和全橋電路,各有優(yōu)缺點。一般認為,在中、小功率場合,采用雙單端電路或半橋電路是適宜的;在大功率場合則采用全橋變換電路。
二、通信電源發(fā)展趨勢
(一)開關(guān)器件的發(fā)展趨勢
電源技術(shù)的精髓是電能變換,即利用電能變化技術(shù)將市電或電池等一次電源變換成適用于各種用電對象的二次電源。其中,開關(guān)電源在電源技術(shù)中占有重要地位,從10kHz發(fā)展到高穩(wěn)定度、大容量、小體積、開關(guān)頻率達到兆赫茲級,開關(guān)電源的發(fā)展為高頻變化提供了硬件基礎(chǔ),促進了現(xiàn)代電源技術(shù)的繁榮和發(fā)展。
(二)通信直流電源產(chǎn)品的技術(shù)發(fā)展市場需求發(fā)展
在需求與技術(shù)的共同推動下,通信直流電源產(chǎn)品體現(xiàn)了如下的發(fā)展態(tài)勢:
體系架構(gòu)相當長的一段時間內(nèi)維持穩(wěn)定。通信直流電源在相當長的時間內(nèi)還是維持現(xiàn)有的交流配電、整流器模塊(并聯(lián))、直流配電、監(jiān)控單元、蓄電池等為主要組成部分的架構(gòu);功率變換模式也將維持現(xiàn)有的高頻開關(guān)模式,暫時不會出現(xiàn)類似從線性電源到開關(guān)電源的階躍性的變化。
功率密度不斷提高。通信一次電源的核心部件整流器的功率密度不斷提高,推動了通信直流電源整機的功率密度不斷提高,但配電器件、蓄電池等密度基本維持穩(wěn)定,一定程度制約了整機系統(tǒng)的功率密度的提高比率。
更高的可靠性。高可靠性是通信電源的最基本要求。隨著器件技術(shù)、通信電源技術(shù)的成熟,以及各通信直流電源設(shè)備廠家在可靠性研究上大力投入,通信直流電源產(chǎn)品可靠性呈不斷提高的趨勢。
按照TRIZ理論(“創(chuàng)造性解決問題的理論”的俄語縮略語)描述的技術(shù)系統(tǒng)發(fā)展進化規(guī)律,一般而言,技術(shù)的生命周期包含四個階段:嬰兒期、成長期、成熟期和衰退期,種種跡象表明,通信直流電源的核心技術(shù),開關(guān)電源技術(shù)基本上開始步入成熟期:效率的提升變得緩慢和困難、而電源損耗不能大幅度降低限制了功率密度的進一步提高,未來幾年甚至十幾年內(nèi),通信直流電源產(chǎn)品將進入一個緩慢發(fā)展的階段,直至有一天,一種新的電源變換技術(shù)出現(xiàn),通信直流電源產(chǎn)品就會再出現(xiàn)一個階躍性的發(fā)展,就像開關(guān)穩(wěn)壓技術(shù)替代線性穩(wěn)壓技術(shù),給電源帶來了革命性的變化。
(三)通信用蓄電池技術(shù)研究的新進展
通信用蓄電池作為通信系統(tǒng)后備的能源供應(yīng)手段,其研制、生產(chǎn)和應(yīng)用技術(shù)一直備受世界各國通信行業(yè)的重視。隨著科技的發(fā)展和技術(shù)的不斷進步,國外正在研制和試驗新一代的通信用蓄電池,有的已經(jīng)進入商用化階段。這些新的蓄電池,由于其材料、結(jié)構(gòu)和技術(shù)上的先進性,在性能上具有傳統(tǒng)的VRLA電池無可比擬的優(yōu)越性。
1.釩電池(VanadiumRedoxBattery)。釩電池(VRB)是一種電解值可以流動的電池,目前正在逐步進入商用化階段。
2.燃料電池。燃料電池是一種化學(xué)電池,也是一種新型的發(fā)電裝置,它所需的化學(xué)原料由外部供給,如氫氧燃料電池,只要外部供給氫和氧,經(jīng)過內(nèi)部電極、催化劑和堿性電解液的作用,就能產(chǎn)生0.9V電壓的直流電能,同時產(chǎn)生大量的熱能.
3.電源監(jiān)控系統(tǒng)的發(fā)展。隨著互聯(lián)網(wǎng)技術(shù)應(yīng)用日益普及和信息處理技術(shù)的不斷發(fā)展,通信系統(tǒng)從以前的單機或小局域系統(tǒng)逐漸發(fā)展至大局域網(wǎng)系統(tǒng)或廣域網(wǎng)系統(tǒng),大量人力、物力被投入到網(wǎng)絡(luò)設(shè)備的管理和維護工作上。不過通信設(shè)施所處環(huán)境越來越復(fù)雜,人煙稀少、交通不便都會增大維護的難度,這對電源設(shè)備的監(jiān)控管理提出了新的需求,保護通信互聯(lián)網(wǎng)終端的電源設(shè)備必須具備數(shù)據(jù)處理和網(wǎng)絡(luò)通信能力。此時,數(shù)字化技術(shù)就表現(xiàn)出了傳統(tǒng)模擬技術(shù)無法實現(xiàn)的優(yōu)勢,數(shù)字化技術(shù)的發(fā)展逐步表現(xiàn)出傳統(tǒng)模擬技術(shù)無法實現(xiàn)的優(yōu)勢.
4.通信電源的環(huán)保要求。環(huán)保問題,一方面的指標是通信電源的電流諧波要符合要求,降低電源的輸入諧波,不但可以改善電源對電網(wǎng)的負載特性,減少給電網(wǎng)帶來嚴重污染的情況,還可減少對其他網(wǎng)絡(luò)設(shè)備的諧波干擾。另一個重要方面,是材料的可循環(huán)利用和環(huán)境的無污染,這方面需要產(chǎn)品滿足WEEE/ROHS指令。
在通信電源開發(fā)、生產(chǎn)早期,人們主要集中研究電源的輸出特性,較少考慮到電源的輸入特性。例如:傳統(tǒng)的在線式電源輸入AC/DC部分通常采用橋式整流濾波電路,其輸入電流呈脈沖狀,導(dǎo)通角約為π/3,波峰因數(shù)大于純電阻負載的1.4倍。這些諧波電流大的電源給電網(wǎng)帶來了嚴重的污染,使電網(wǎng)波形失真,實際負荷能力降低,對于三相四線制的電網(wǎng)來說,還很有可能因中性線電流過大而出現(xiàn)不安全隱患。
參考文獻:
[1]朱雄世,《通信電源的現(xiàn)狀與展望》.
[2]《淺析全球通信電源技術(shù)發(fā)展趨勢》.
[3]《通信直流電源發(fā)展趨勢》.
[4]孫向陽、張樹治,《國外通信用蓄電池技術(shù)研究的新進展》.
[5]《通信電源技術(shù)發(fā)展趨勢及標準研究方向》.
[6]曾瑛,《淺談通信電源》.
[7]王改娥、李克民,《談我國通信電源的發(fā)展方向》.
[8]王改娥、李克民,《我國通信電源的發(fā)展回顧與展望》.
[9]侯福平,《UPS系統(tǒng)在通信網(wǎng)絡(luò)中使用的特點及要求》.
[10]《全球通信電源技術(shù)發(fā)展呈現(xiàn)五大趨勢》.