亚洲精品一区二区三区大桥未久_亚洲春色古典小说自拍_国产人妻aⅴ色偷_国产精品一区二555

函數(shù)教案8篇

時(shí)間:2022-12-08 20:46:56

緒論:在尋找寫作靈感嗎?愛發(fā)表網(wǎng)為您精選了8篇函數(shù)教案,愿這些內(nèi)容能夠啟迪您的思維,激發(fā)您的創(chuàng)作熱情,歡迎您的閱讀與分享!

函數(shù)教案

篇1

2.若集合A中有m個(gè)元素,集合B中有n個(gè)元素,則從A到B可建立nm個(gè)映射

3.函數(shù)定義:函數(shù)就是定義在非空數(shù)集A,B上的映射,此時(shí)稱數(shù)集A為定義域,象集C={f(x)|x∈A}為值域。定義域,對應(yīng)法則,值域構(gòu)成了函數(shù)的三要素

4.相同函數(shù)的判斷方法:①定義域、值域;②對應(yīng)法則(兩點(diǎn)必須同時(shí)具備)

5.求函數(shù)的定義域常涉及到的依據(jù)為①分母不為0;②偶次根式中被開方數(shù)不小于0;③對數(shù)的真數(shù)大于0,底數(shù)大于零且不等于1;④零指數(shù)冪的底數(shù)不等于零;⑤實(shí)際問題要考慮實(shí)際意義⑥注意同一表達(dá)式中的兩變量的取值范圍是否相互影響

6.函數(shù)解析式的求法:

①定義法(拼湊):②換元法:③待定系數(shù)法④賦值法7.函數(shù)值域的求法:

①換元配方法。如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域。②判別式法。一個(gè)二次分式函數(shù)在自變量沒有限制時(shí)就可以用判別式法去值域。其方法是將等式兩邊同乘以dx2+ex+f移項(xiàng)整理成一個(gè)x的一元二次方程,方程有實(shí)數(shù)解則判別式大于等于零,得到一個(gè)關(guān)于y的不等式,解出y的范圍就是函數(shù)的值域。

③單調(diào)性法。如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來求出值域

8.函數(shù)單調(diào)性的證明方法:

第一步:設(shè)x1、x2是給定區(qū)間內(nèi)的兩個(gè)任意的值,且x1

第二步:作差¦(x1)-&brVBar;(x2),并對“差式”變形,主要采用的方法是“因式分解”或“配方法”;

第三步:判斷差式¦(x1)-&brVBar;(x2)的正負(fù)號,從而證得其增減性

9、函數(shù)圖像變換知識

①平移變換:

形如:y=f(x+a):把函數(shù)y=f(x)的圖象沿x軸方向向左或向右平移

|a|個(gè)單位,就得到y(tǒng)=f(x+a)的圖象。

形如:y=f(x)+a:把函數(shù)y=f(x)的圖象沿y軸方向向上或向下平移|a|個(gè)單位,就得到y(tǒng)=f(x)+a的圖象

②.對稱變換y=f(x)y=f(-x),關(guān)于y軸對稱

y=f(x)y=-f(x),關(guān)于x軸對稱

③.翻折變換

y=f(x)y=f|x|,(左折變換)

把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱

y=f(x)y=|f(x)|(上折變換)

把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱

10.互為反函數(shù)的定義域與值域的關(guān)系:原函數(shù)的定義域和值域分別是反函數(shù)的值域及定義域;

11.求反函數(shù)的步驟:①求反函數(shù)的定義域(即y=f(x)的值域)②將x,y互換,得y=f–1(x);③將y=f(x)看成關(guān)于x的方程,解出x=f–1(y),若有兩解,要注意解的選擇;。

12.互為反函數(shù)的圖象間的關(guān)系:關(guān)于直線y=x對稱;

13.原函數(shù)與反函數(shù)的圖象交點(diǎn)可在直線y=x上,也可是關(guān)于直線y=x對稱的兩點(diǎn)

14.原函數(shù)與反函數(shù)具有相同的單調(diào)性

15、在定義域上單調(diào)的函數(shù)才具有反函數(shù);反之,并不成立(如y=1/x)

16.復(fù)合函數(shù)的定義域求法:

①已知y=f(x)的定義域?yàn)锳,求y=f[g(x)]的定義域時(shí),可令g(x)ÎA,求得x的取值范圍即可。

②已知y=f[g(x)]的定義域?yàn)锳,求y=f(x)的定義域時(shí),可令xÎA,求得g(x)的函數(shù)值范圍即可。

17.復(fù)合函數(shù)y=f[g(x)]的值域求法:

首先根據(jù)定義域求出u=g(x)的取值范圍A,

在uÎA的情況下,求出y=f(u)的值域即可。

18.復(fù)合函數(shù)內(nèi)層函數(shù)與外層函數(shù)在定義域內(nèi)單調(diào)性相同,則函數(shù)是增函數(shù);單調(diào)性不同則函數(shù)是減函數(shù)。增增、減減為增;增減、減增才減

①f(x)與f(x)+c(c為常數(shù))具有相同的單調(diào)性

②f(x)與c·f(x)當(dāng)c>0是單調(diào)性相同,當(dāng)c<0時(shí)具有相反的單調(diào)性

③當(dāng)f(x)恒不為0時(shí),f(x)與1/f(x)具有相反的單調(diào)性

④當(dāng)f(x)恒為非負(fù)時(shí),f(x)與具有相同的單調(diào)性

⑤當(dāng)f(x)、g(x)都是增(減)函數(shù)時(shí),f(x)+g(x)也是增(減)函數(shù)

設(shè)f(x),g(x)都是增(減)函數(shù),則f(x)·g(x)當(dāng)f(x),g(x)兩者都恒大于0時(shí)也是增(減)函數(shù),當(dāng)兩者都恒小于0時(shí)是減(增)函數(shù)

19.二次函數(shù)求最值問題:根據(jù)拋物線的對稱軸與區(qū)間關(guān)系進(jìn)行分析,

Ⅰ、若頂點(diǎn)的橫坐標(biāo)在給定的區(qū)間上,則

a>0時(shí):在頂點(diǎn)處取得最小值,最大值在距離對稱軸較遠(yuǎn)的端點(diǎn)處取得;

a<0時(shí):在頂點(diǎn)處取得最大值,最小值在距離對稱軸較遠(yuǎn)的端點(diǎn)處取得;

Ⅱ、若頂點(diǎn)的橫坐標(biāo)不在給定的區(qū)間上,則

a>0時(shí):最小值在離對稱軸近的端點(diǎn)處取得,最大值在離對稱軸遠(yuǎn)的端點(diǎn)處取得;

a<0時(shí):最大值在離對稱軸近的端點(diǎn)處取得,最小值在離對稱軸遠(yuǎn)的端點(diǎn)處取得

20.一元二次方程實(shí)根分布問題解法:

①將方程的根視為開口向上的二次函數(shù)的圖像與x軸交點(diǎn)的橫坐標(biāo)

②從判別式、對稱軸、區(qū)間端點(diǎn)函數(shù)值三方面分析限制條件

21.分式函數(shù)y=(ax+b)/(cx+d)的圖像畫法:

①確定定義域漸近線x=-d/c②確定值域漸近線y=a/c③根據(jù)y軸上的交點(diǎn)坐標(biāo)確定曲線所在象限位置。

22.指數(shù)式運(yùn)算法則23.對數(shù)式運(yùn)算法則:

24.指數(shù)函數(shù)的圖像與底數(shù)關(guān)系:

在第一象限內(nèi),底數(shù)越大,圖像(逆時(shí)針方向)越靠近y軸。

25.對數(shù)函數(shù)的圖像與底數(shù)關(guān)系:

在第一象限內(nèi),底數(shù)越大,圖像(順時(shí)針方向)越靠近x軸。

26.比較兩個(gè)指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時(shí)轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較

27.抽象函數(shù)的性質(zhì)所對應(yīng)的一些具體特殊函數(shù)模型:

①f(x1+x2)=f(x1)+f(x2)Þ正比例函數(shù)f(x)=kx(k¹0)

②f(x1+x2)=f(x1)·f(x2);f(x1-x2)=f(x1)÷f(x2)Þy=ax;

③f(x1•x2)=f(x1)+f(x2);f(x1/x2)=f(x1)-f(x2)Þy=logax

28.如果f(a+x)=f(b-x)成立,則y=f(x)圖像關(guān)于x=(a+b)/2對稱;

特別是,f(x)=f(-x)成立,則y=f(x)圖像關(guān)于y軸對稱

29.a>f(x)恒成立Ûa>f(x)的最大值

a

篇2

目的:要求學(xué)生掌握用“旋轉(zhuǎn)”定義角的概念,并進(jìn)而理解“正角”“負(fù)角”“象限角”“終邊相同的角”的含義。

過程:一、提出課題:“三角函數(shù)”

回憶初中學(xué)過的“銳角三角函數(shù)”——它是利用直角三角形中兩邊的比值來定義的。相對于現(xiàn)在,我們研究的三角函數(shù)是“任意角的三角函數(shù)”,它對我們今后的學(xué)習(xí)和研究都起著十分重要的作用,并且在各門學(xué)科技術(shù)中都有廣泛應(yīng)用。

二、角的概念的推廣

1.回憶:初中是任何定義角的?(從一個(gè)點(diǎn)出發(fā)引出的兩條射線構(gòu)成的幾何圖形)這種概念的優(yōu)點(diǎn)是形象、直觀、容易理解,但它的弊端在于“狹隘”

2.講解:“旋轉(zhuǎn)”形成角(P4)

突出“旋轉(zhuǎn)”注意:“頂點(diǎn)”“始邊”“終邊”

“始邊”往往合于軸正半軸

3.“正角”與“負(fù)角”——這是由旋轉(zhuǎn)的方向所決定的。

記法:角或可以簡記成4.由于用“旋轉(zhuǎn)”定義角之后,角的范圍大大地?cái)U(kuò)大了。

1°角有正負(fù)之分如:a=210°b=-150°g=-660°

2°角可以任意大

實(shí)例:體操動作:旋轉(zhuǎn)2周(360°×2=720°)3周(360°×3=1080°)

3°還有零角一條射線,沒有旋轉(zhuǎn)

三、關(guān)于“象限角”

為了研究方便,我們往往在平面直角坐標(biāo)系中來討論角

角的頂點(diǎn)合于坐標(biāo)原點(diǎn),角的始邊合于軸的正半軸,這樣一來,角的終邊落在第幾象限,我們就說這個(gè)角是第幾象限的角(角的終邊落在坐標(biāo)軸上,則此角不屬于任何一個(gè)象限)

例如:30°390°-330°是第Ⅰ象限角300°-60°是第Ⅳ象限角

585°1180°是第Ⅲ象限角-2000°是第Ⅱ象限角等

四、關(guān)于終邊相同的角

1.觀察:390°,-330°角,它們的終邊都與30°角的終邊相同

2.終邊相同的角都可以表示成一個(gè)0°到360°的角與個(gè)周角的和

390°=30°+360°-330°=30°-360°30°=30°+0×360°1470°=30°+4×360°-1770°=30°-5×360°3.所有與a終邊相同的角連同a在內(nèi)可以構(gòu)成一個(gè)集合

即:任何一個(gè)與角a終邊相同的角,都可以表示成角a與整數(shù)個(gè)周角的和

4.例一(P5略)

五、小結(jié):1°角的概念的推廣

用“旋轉(zhuǎn)”定義角角的范圍的擴(kuò)大

2°“象限角”與“終邊相同的角”

篇3

②應(yīng)用對數(shù)函數(shù)的性質(zhì)可以解決:對數(shù)的大小比較,求復(fù)

合函數(shù)的定義域、值域及單調(diào)性。

③注重函數(shù)思想、等價(jià)轉(zhuǎn)化、分類討論等思想的滲透,提高

解題能力。

教學(xué)重點(diǎn)與難點(diǎn):對數(shù)函數(shù)的性質(zhì)的應(yīng)用。

教學(xué)過程設(shè)計(jì):

⒈復(fù)習(xí)提問:對數(shù)函數(shù)的概念及性質(zhì)。

⒉開始正課

1比較數(shù)的大小

例1比較下列各組數(shù)的大小。

⑴loga5.1,loga5.9(a>0,a≠1)

⑵log0.50.6,logЛ0.5,lnЛ

師:請同學(xué)們觀察一下⑴中這兩個(gè)對數(shù)有何特征?

生:這兩個(gè)對數(shù)底相等。

師:那么對于兩個(gè)底相等的對數(shù)如何比大小?

生:可構(gòu)造一個(gè)以a為底的對數(shù)函數(shù),用對數(shù)函數(shù)的單調(diào)性比大小。

師:對,請敘述一下這道題的解題過程。

生:對數(shù)函數(shù)的單調(diào)性取決于底的大?。寒?dāng)0<a<1時(shí),函數(shù)y=logax單

調(diào)遞減,所以loga5.1>loga5.9;當(dāng)a>1時(shí),函數(shù)y=logax單調(diào)遞

增,所以loga5.1<loga5.9。

板書:

解:Ⅰ)當(dāng)0<a<1時(shí),函數(shù)y=logax在(0,+∞)上是減函數(shù),

5.1<5.9loga5.1>loga5.9

Ⅱ)當(dāng)a>1時(shí),函數(shù)y=logax在(0,+∞)上是增函數(shù),

5.1<5.9loga5.1<loga5.9

師:請同學(xué)們觀察一下⑵中這三個(gè)對數(shù)有何特征?

生:這三個(gè)對數(shù)底、真數(shù)都不相等。

師:那么對于這三個(gè)對數(shù)如何比大???

生:找“中間量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5<log0.50.6<lnЛ。

板書:略。

師:比較對數(shù)值的大小常用方法:①構(gòu)造對數(shù)函數(shù),直接利用對數(shù)函

數(shù)的單調(diào)性比大小,②借用“中間量”間接比大小,③利用對數(shù)

函數(shù)圖象的位置關(guān)系來比大小。

2函數(shù)的定義域,值域及單調(diào)性。

例2⑴求函數(shù)y=的定義域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

師:如何來求⑴中函數(shù)的定義域?(提示:求函數(shù)的定義域,就是要

使函數(shù)有意義。若函數(shù)中含有分母,分母不為零;有偶次根式,

被開方式大于或等于零;若函數(shù)中有對數(shù)的形式,則真數(shù)大于

零,如果函數(shù)中同時(shí)出現(xiàn)以上幾種情況,就要全部考慮進(jìn)去,求

它們共同作用的結(jié)果。)

生:分母2x-1≠0且偶次根式的被開方式log0.8x-1≥0,且真數(shù)x>0。

板書:

解:2x-1≠0x≠0.5

log0.8x-1≥0,x≤0.8

x>0x>0

x(0,0.5)∪(0.5,0.8〕

師:接下來我們一起來解這個(gè)不等式。

分析:要解這個(gè)不等式,首先要使這個(gè)不等式有意義,即真數(shù)大于零,

再根據(jù)對數(shù)函數(shù)的單調(diào)性求解。

師:請你寫一下這道題的解題過程。

生:<板書>

解:x2+2x-3>0x<-3或x>1

(3x+3)>0,x>-1

x2+2x-3<(3x+3)-2<x<3

不等式的解為:1<x<3

例3求下列函數(shù)的值域和單調(diào)區(qū)間。

⑴y=log0.5(x-x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

師:求例3中函數(shù)的的值域和單調(diào)區(qū)間要用及復(fù)合函數(shù)的思想方法。

下面請同學(xué)們來解⑴。

生:此函數(shù)可看作是由y=log0.5u,u=x-x2復(fù)合而成。

板書:

解:⑴u=x-x2>0,0<x<1

u=x-x2=-(x-0.5)2+0.25,0<u≤0.25

y=log0.5u≥log0.50.25=2

y≥2

xx(0,0.5]x[0.5,1)

u=x-x2

y=log0.5u

y=log0.5(x-x2)

函數(shù)y=log0.5(x-x2)的單調(diào)遞減區(qū)間(0,0.5],單調(diào)遞增區(qū)間[0.5,1)

注:研究任何函數(shù)的性質(zhì)時(shí),都應(yīng)該首先保證這個(gè)函數(shù)有意義,否則

函數(shù)都不存在,性質(zhì)就無從談起。

師:在⑴的基礎(chǔ)上,我們一起來解⑵。請同學(xué)們觀察一下⑴與⑵有什

么區(qū)別?

生:⑴的底數(shù)是常值,⑵的底數(shù)是字母。

師:那么⑵如何來解?

生:只要對a進(jìn)行分類討論,做法與⑴類似。

板書:略。

⒊小結(jié)

這堂課主要講解如何應(yīng)用對數(shù)函數(shù)的性質(zhì)解決一些問題,希望能

通過這堂課使同學(xué)們對等價(jià)轉(zhuǎn)化、分類討論等思想加以應(yīng)用,提高解題能力。

⒋作業(yè)

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a為常數(shù))

⑵已知函數(shù)y=loga(x2-2x),(a>0,a≠1)

①求它的單調(diào)區(qū)間;②當(dāng)0<a<1時(shí),分別在各單調(diào)區(qū)間上求它的反函數(shù)。

⑶已知函數(shù)y=loga(a>0,b>0,且a≠1)

①求它的定義域;②討論它的奇偶性;③討論它的單調(diào)性。

⑷已知函數(shù)y=loga(ax-1)(a>0,a≠1),

①求它的定義域;②當(dāng)x為何值時(shí),函數(shù)值大于1;③討論它的

單調(diào)性。

5.課堂教學(xué)設(shè)計(jì)說明

篇4

2.若集合A中有m個(gè)元素,集合B中有n個(gè)元素,則從A到B可建立nm個(gè)映射

3.函數(shù)定義:函數(shù)就是定義在非空數(shù)集A,B上的映射,此時(shí)稱數(shù)集A為定義域,象集C={f(x)|x∈A}為值域。定義域,對應(yīng)法則,值域構(gòu)成了函數(shù)的三要素

4.相同函數(shù)的判斷方法:①定義域、值域;②對應(yīng)法則(兩點(diǎn)必須同時(shí)具備)

5.求函數(shù)的定義域常涉及到的依據(jù)為①分母不為0;②偶次根式中被開方數(shù)不小于0;③對數(shù)的真數(shù)大于0,底數(shù)大于零且不等于1;④零指數(shù)冪的底數(shù)不等于零;⑤實(shí)際問題要考慮實(shí)際意義⑥注意同一表達(dá)式中的兩變量的取值范圍是否相互影響

6.函數(shù)解析式的求法:

①定義法(拼湊):②換元法:③待定系數(shù)法④賦值法7.函數(shù)值域的求法:

①換元配方法。如果一個(gè)函數(shù)是二次函數(shù)或者經(jīng)過換元可以寫成二次函數(shù)的形式,那么將這個(gè)函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域。②判別式法。一個(gè)二次分式函數(shù)在自變量沒有限制時(shí)就可以用判別式法去值域。其方法是將等式兩邊同乘以dx2+ex+f移項(xiàng)整理成一個(gè)x的一元二次方程,方程有實(shí)數(shù)解則判別式大于等于零,得到一個(gè)關(guān)于y的不等式,解出y的范圍就是函數(shù)的值域。

③單調(diào)性法。如果函數(shù)在給出的定義域區(qū)間上是嚴(yán)格單調(diào)的,那么就可以利用端點(diǎn)的函數(shù)值來求出值域

8.函數(shù)單調(diào)性的證明方法:

第一步:設(shè)x1、x2是給定區(qū)間內(nèi)的兩個(gè)任意的值,且x1

第二步:作差¦(x1)-&brVBar;(x2),并對“差式”變形,主要采用的方法是“因式分解”或“配方法”;

第三步:判斷差式¦(x1)-&brVBar;(x2)的正負(fù)號,從而證得其增減性

9、函數(shù)圖像變換知識

①平移變換:

形如:y=f(x+a):把函數(shù)y=f(x)的圖象沿x軸方向向左或向右平移

|a|個(gè)單位,就得到y(tǒng)=f(x+a)的圖象。

形如:y=f(x)+a:把函數(shù)y=f(x)的圖象沿y軸方向向上或向下平移|a|個(gè)單位,就得到y(tǒng)=f(x)+a的圖象

②.對稱變換y=f(x)y=f(-x),關(guān)于y軸對稱

y=f(x)y=-f(x),關(guān)于x軸對稱

③.翻折變換

y=f(x)y=f|x|,(左折變換)

把y軸右邊的圖象保留,然后將y軸右邊部分關(guān)于y軸對稱

y=f(x)y=|f(x)|(上折變換)

把x軸上方的圖象保留,x軸下方的圖象關(guān)于x軸對稱

10.互為反函數(shù)的定義域與值域的關(guān)系:原函數(shù)的定義域和值域分別是反函數(shù)的值域及定義域;

11.求反函數(shù)的步驟:①求反函數(shù)的定義域(即y=f(x)的值域)②將x,y互換,得y=f–1(x);③將y=f(x)看成關(guān)于x的方程,解出x=f–1(y),若有兩解,要注意解的選擇;。

12.互為反函數(shù)的圖象間的關(guān)系:關(guān)于直線y=x對稱;

13.原函數(shù)與反函數(shù)的圖象交點(diǎn)可在直線y=x上,也可是關(guān)于直線y=x對稱的兩點(diǎn)

14.原函數(shù)與反函數(shù)具有相同的單調(diào)性

15、在定義域上單調(diào)的函數(shù)才具有反函數(shù);反之,并不成立(如y=1/x)

16.復(fù)合函數(shù)的定義域求法:

①已知y=f(x)的定義域?yàn)锳,求y=f[g(x)]的定義域時(shí),可令g(x)ÎA,求得x的取值范圍即可。

②已知y=f[g(x)]的定義域?yàn)锳,求y=f(x)的定義域時(shí),可令xÎA,求得g(x)的函數(shù)值范圍即可。

17.復(fù)合函數(shù)y=f[g(x)]的值域求法:

首先根據(jù)定義域求出u=g(x)的取值范圍A,

在uÎA的情況下,求出y=f(u)的值域即可。

18.復(fù)合函數(shù)內(nèi)層函數(shù)與外層函數(shù)在定義域內(nèi)單調(diào)性相同,則函數(shù)是增函數(shù);單調(diào)性不同則函數(shù)是減函數(shù)。增增、減減為增;增減、減增才減

①f(x)與f(x)+c(c為常數(shù))具有相同的單調(diào)性

②f(x)與c·f(x)當(dāng)c>0是單調(diào)性相同,當(dāng)c<0時(shí)具有相反的單調(diào)性

③當(dāng)f(x)恒不為0時(shí),f(x)與1/f(x)具有相反的單調(diào)性

④當(dāng)f(x)恒為非負(fù)時(shí),f(x)與具有相同的單調(diào)性

⑤當(dāng)f(x)、g(x)都是增(減)函數(shù)時(shí),f(x)+g(x)也是增(減)函數(shù)

設(shè)f(x),g(x)都是增(減)函數(shù),則f(x)·g(x)當(dāng)f(x),g(x)兩者都恒大于0時(shí)也是增(減)函數(shù),當(dāng)兩者都恒小于0時(shí)是減(增)函數(shù)

19.二次函數(shù)求最值問題:根據(jù)拋物線的對稱軸與區(qū)間關(guān)系進(jìn)行分析,

Ⅰ、若頂點(diǎn)的橫坐標(biāo)在給定的區(qū)間上,則

a>0時(shí):在頂點(diǎn)處取得最小值,最大值在距離對稱軸較遠(yuǎn)的端點(diǎn)處取得;

a<0時(shí):在頂點(diǎn)處取得最大值,最小值在距離對稱軸較遠(yuǎn)的端點(diǎn)處取得;

Ⅱ、若頂點(diǎn)的橫坐標(biāo)不在給定的區(qū)間上,則

a>0時(shí):最小值在離對稱軸近的端點(diǎn)處取得,最大值在離對稱軸遠(yuǎn)的端點(diǎn)處取得;

a<0時(shí):最大值在離對稱軸近的端點(diǎn)處取得,最小值在離對稱軸遠(yuǎn)的端點(diǎn)處取得

20.一元二次方程實(shí)根分布問題解法:

①將方程的根視為開口向上的二次函數(shù)的圖像與x軸交點(diǎn)的橫坐標(biāo)

②從判別式、對稱軸、區(qū)間端點(diǎn)函數(shù)值三方面分析限制條件

21.分式函數(shù)y=(ax+b)/(cx+d)的圖像畫法:

①確定定義域漸近線x=-d/c②確定值域漸近線y=a/c③根據(jù)y軸上的交點(diǎn)坐標(biāo)確定曲線所在象限位置。

22.指數(shù)式運(yùn)算法則23.對數(shù)式運(yùn)算法則:

24.指數(shù)函數(shù)的圖像與底數(shù)關(guān)系:

在第一象限內(nèi),底數(shù)越大,圖像(逆時(shí)針方向)越靠近y軸。

25.對數(shù)函數(shù)的圖像與底數(shù)關(guān)系:

在第一象限內(nèi),底數(shù)越大,圖像(順時(shí)針方向)越靠近x軸。

26.比較兩個(gè)指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若底數(shù)不相同時(shí)轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較

27.抽象函數(shù)的性質(zhì)所對應(yīng)的一些具體特殊函數(shù)模型:

①f(x1+x2)=f(x1)+f(x2)Þ正比例函數(shù)f(x)=kx(k¹0)

②f(x1+x2)=f(x1)·f(x2);f(x1-x2)=f(x1)÷f(x2)Þy=ax;

③f(x1•x2)=f(x1)+f(x2);f(x1/x2)=f(x1)-f(x2)Þy=logax

28.如果f(a+x)=f(b-x)成立,則y=f(x)圖像關(guān)于x=(a+b)/2對稱;

特別是,f(x)=f(-x)成立,則y=f(x)圖像關(guān)于y軸對稱

29.a>f(x)恒成立Ûa>f(x)的最大值

a

篇5

1、教材的地位和作用:

函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中學(xué)生對函數(shù)概念理解的程度會直接影響數(shù)學(xué)其它知識的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。

2、教學(xué)目標(biāo)及確立的依據(jù):

教學(xué)目標(biāo):

(1)教學(xué)知識目標(biāo):了解對應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對函數(shù)抽象符號的理解。

(2)能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力。

(3)德育滲透目標(biāo):使學(xué)生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。

教學(xué)目標(biāo)確立的依據(jù):

函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)生學(xué)好其他的數(shù)學(xué)內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。

3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):

教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號的理解。

教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號的理解。

重點(diǎn)難點(diǎn)確立的依據(jù):

映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識的能力也比較高,對于剛剛升入高中不久的學(xué)生來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來高考有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號的理解與運(yùn)用上。

二、教材的處理:

將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動學(xué)生的學(xué)習(xí)熱情與參與意識,運(yùn)用引導(dǎo)對比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使學(xué)生真正對函數(shù)的概念有很準(zhǔn)確的認(rèn)識。

三、教學(xué)方法和學(xué)法

教學(xué)方法:講授為主,學(xué)生自主預(yù)習(xí)為輔。

依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識函數(shù)概念及函數(shù)符號與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號的運(yùn)用在學(xué)生的思想和知識結(jié)構(gòu)中打上深刻的烙印,為學(xué)生能學(xué)好后面的知識打下堅(jiān)實(shí)的基礎(chǔ)。

學(xué)法:

四、教學(xué)程序

一、課程導(dǎo)入

通過舉以下一個(gè)通俗的例子引出通過某個(gè)對應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。

例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問,通過“找好朋友”這個(gè)對應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?

二.新課講授:

(1)接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對應(yīng)關(guān)系引導(dǎo)學(xué)生總結(jié)歸納它們的共同性質(zhì)(一對一,多對一),進(jìn)而給出映射的概念,表示符號f:AB,及原像和像的定義。強(qiáng)調(diào)指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對應(yīng)法則f。進(jìn)一步引導(dǎo)學(xué)生總結(jié)判斷一個(gè)從A到B的對應(yīng)是否為映射的關(guān)鍵是看A中的任意一個(gè)元素通過對應(yīng)法則f在B中是否有唯一確定的元素與之對應(yīng)。

(2)鞏固練習(xí)課本52頁第八題。

此練習(xí)能讓學(xué)生更深刻的認(rèn)識到映射可以“一對多,多對一”但不能是“一對多”。

例1.給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個(gè)簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對應(yīng)關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)A、B是兩個(gè)非空集合,如果按照某種對應(yīng)法則f,使得A中的任何一個(gè)元素在集合B中都有唯一的元素與之對應(yīng)則這樣的對應(yīng)叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對應(yīng)法則f),并說明把函f:AB記為y=f(x),其中自變量x的取值范圍A叫做函數(shù)的定義域,與x的值相對應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{f(x):x∈A}叫做函數(shù)的值域。

并把函數(shù)的近代定義與映射定義比較使學(xué)生認(rèn)識到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。

再以讓學(xué)生判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):

2.函數(shù)是非空數(shù)集到非空數(shù)集的映射。

3.f表示對應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。

4.f(x)是一個(gè)符號,不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。

5.集合A中的數(shù)的任意性,集合B中數(shù)的唯一性。

6.“f:AB”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域A(要優(yōu)先),值域C(上函數(shù)值的集合且C∈B)。

三.講解例題

例1.問y=1(x∈A)是不是函數(shù)?

解:y=1可以化為y=0*X+1

畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對應(yīng)是“多對一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。

[注]:引導(dǎo)學(xué)生從集合,映射的觀點(diǎn)認(rèn)識函數(shù)的定義。

四.課時(shí)小結(jié):

1.映射的定義。

2.函數(shù)的近代定義。

3.函數(shù)的三要素及符號的正確理解和應(yīng)用。

4.函數(shù)近代定義的五大注意點(diǎn)。

五.課后作業(yè)及板書設(shè)計(jì)

書本P51習(xí)題2.1的1、2寫在書上3、4、5上交。

預(yù)習(xí)函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。

函數(shù)(一)

一、映射:2.函數(shù)近代定義:例題練習(xí)

篇6

一、教材分析

1、教材的地位和作用:

函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強(qiáng)是函數(shù)理論的一個(gè)顯著特點(diǎn),只有對概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中學(xué)生對函數(shù)概念理解的程度會直接影響數(shù)學(xué)其它知識的學(xué)習(xí),所以函數(shù)的第一課時(shí)非常的重要。

2、教學(xué)目標(biāo)及確立的依據(jù):

教學(xué)目標(biāo):

(1)教學(xué)知識目標(biāo):了解對應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對函數(shù)抽象符號的理解。

(2)能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力。

(3)德育滲透目標(biāo):使學(xué)生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點(diǎn)。

教學(xué)目標(biāo)確立的依據(jù):

函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個(gè)中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強(qiáng)函數(shù)教學(xué)可幫助學(xué)生學(xué)好其他的數(shù)學(xué)內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。

3、教學(xué)重點(diǎn)難點(diǎn)及確立的依據(jù):

教學(xué)重點(diǎn):映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號的理解。

教學(xué)難點(diǎn):映射的概念,函數(shù)近代概念,及函數(shù)符號的理解。

重點(diǎn)難點(diǎn)確立的依據(jù):

映射的概念和函數(shù)的近代定義抽象性都比較強(qiáng),要求學(xué)生的理性認(rèn)識的能力也比較高,對于剛剛升入高中不久的學(xué)生來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來高考有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點(diǎn)難點(diǎn)必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號的理解與運(yùn)用上。

二、教材的處理:

將映射的定義及類比手法的運(yùn)用作為本課突破難點(diǎn)的關(guān)鍵。函數(shù)的定義,是以集合、映射的觀點(diǎn)給出,這與初中教材變量值與對應(yīng)觀點(diǎn)給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點(diǎn),主要是從實(shí)際出發(fā)調(diào)動學(xué)生的學(xué)習(xí)熱情與參與意識,運(yùn)用引導(dǎo)對比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個(gè)概念的異同,使學(xué)生真正對函數(shù)的概念有很準(zhǔn)確的認(rèn)識。

三、教學(xué)方法和學(xué)法

教學(xué)方法:講授為主,學(xué)生自主預(yù)習(xí)為輔。

依據(jù)是:因?yàn)橐孕碌挠^點(diǎn)認(rèn)識函數(shù)概念及函數(shù)符號與運(yùn)用時(shí),更重要的是必須給學(xué)生講清楚概念及注意事項(xiàng),并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號的運(yùn)用在學(xué)生的思想和知識結(jié)構(gòu)中打上深刻的烙印,為學(xué)生能學(xué)好后面的知識打下堅(jiān)實(shí)的基礎(chǔ)。

學(xué)法:四、教學(xué)程序

一、課程導(dǎo)入

通過舉以下一個(gè)通俗的例子引出通過某個(gè)對應(yīng)法則可以將兩個(gè)非空集合聯(lián)系在一起。

例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個(gè)集合,問,通過“找好朋友”這個(gè)對應(yīng)法則是否能將這兩個(gè)集合的某些元素聯(lián)系在一起?

二.新課講授:

(1)接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對應(yīng)關(guān)系引導(dǎo)學(xué)生總結(jié)歸納它們的共同性質(zhì)(一對一,多對一),進(jìn)而給出映射的概念,表示符號f:ab,及原像和像的定義。強(qiáng)調(diào)指出非空集合a到非空集合b的映射包括三部分即非空集合a、b和a到b的對應(yīng)法則f。進(jìn)一步引導(dǎo)學(xué)生總結(jié)判斷一個(gè)從a到b的對應(yīng)是否為映射的關(guān)鍵是看a中的任意一個(gè)元素通過對應(yīng)法則f在b中是否有唯一確定的元素與之對應(yīng)。

(2)鞏固練習(xí)課本52頁第八題。

此練習(xí)能讓學(xué)生更深刻的認(rèn)識到映射可以“一對多,多對一”但不能是“一對多”。

例1.給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個(gè)簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對應(yīng)關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)a、b是兩個(gè)非空集合,如果按照某種對應(yīng)法則f,使得a中的任何一個(gè)元素在集合b中都有唯一的元素與之對應(yīng)則這樣的對應(yīng)叫做集合a到集合b的映射,它包括非空集合a和b以及從a到b的對應(yīng)法則f),并說明把函f:ab記為y=f(x),其中自變量x的取值范圍a叫做函數(shù)的定義域,與x的值相對應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{f(x):x∈a}叫做函數(shù)的值域。

并把函數(shù)的近代定義與映射定義比較使學(xué)生認(rèn)識到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。

再以讓學(xué)生判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項(xiàng):

2.函數(shù)是非空數(shù)集到非空數(shù)集的映射。

3.f表示對應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。

4.f(x)是一個(gè)符號,不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。

5.集合a中的數(shù)的任意性,集合b中數(shù)的唯一性。

6.“f:ab”表示一個(gè)函數(shù)有三要素:法則f(是核心),定義域a(要優(yōu)先),值域c(上函數(shù)值的集合且c∈b)。

三.講解例題

例1.問y=1(x∈a)是不是函數(shù)?

解:y=1可以化為y=0*x+1

畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對應(yīng)是“多對一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。

[注]:引導(dǎo)學(xué)生從集合,映射的觀點(diǎn)認(rèn)識函數(shù)的定義。

四.課時(shí)小結(jié):

1.映射的定義。

2.函數(shù)的近代定義。

3.函數(shù)的三要素及符號的正確理解和應(yīng)用。

4.函數(shù)近代定義的五大注意點(diǎn)。

五.課后作業(yè)及板書設(shè)計(jì)

書本p51習(xí)題2.1的1、2寫在書上3、4、5上交。

預(yù)習(xí)函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。

函數(shù)(一)

一、映射:2.函數(shù)近代定義:例題練習(xí)

篇7

目的:要求學(xué)生掌握用“旋轉(zhuǎn)”定義角的概念,并進(jìn)而理解“正角”“負(fù)角”“象限角”“終邊相同的角”的含義。

過程:一、提出課題:“三角函數(shù)”

回憶初中學(xué)過的“銳角三角函數(shù)”——它是利用直角三角形中兩邊的比值來定義的。相對于現(xiàn)在,我們研究的三角函數(shù)是“任意角的三角函數(shù)”,它對我們今后的學(xué)習(xí)和研究都起著十分重要的作用,并且在各門學(xué)科技術(shù)中都有廣泛應(yīng)用。

二、角的概念的推廣

1.回憶:初中是任何定義角的?(從一個(gè)點(diǎn)出發(fā)引出的兩條射線構(gòu)成的幾何圖形)這種概念的優(yōu)點(diǎn)是形象、直觀、容易理解,但它的弊端在于“狹隘”

2.講解:“旋轉(zhuǎn)”形成角(P4)

突出“旋轉(zhuǎn)”注意:“頂點(diǎn)”“始邊”“終邊”

“始邊”往往合于軸正半軸

3.“正角”與“負(fù)角”——這是由旋轉(zhuǎn)的方向所決定的。

記法:角或可以簡記成

4.由于用“旋轉(zhuǎn)”定義角之后,角的范圍大大地?cái)U(kuò)大了。

1°角有正負(fù)之分如:a=210°b=-150°g=-660°

2°角可以任意大

實(shí)例:體操動作:旋轉(zhuǎn)2周(360°×2=720°)3周(360°×3=1080°)

3°還有零角一條射線,沒有旋轉(zhuǎn)

三、關(guān)于“象限角”

為了研究方便,我們往往在平面直角坐標(biāo)系中來討論角

角的頂點(diǎn)合于坐標(biāo)原點(diǎn),角的始邊合于軸的正半軸,這樣一來,角的終邊落在第幾象限,我們就說這個(gè)角是第幾象限的角(角的終邊落在坐標(biāo)軸上,則此角不屬于任何一個(gè)象限)

例如:30°390°-330°是第Ⅰ象限角300°-60°是第Ⅳ象限角

585°1180°是第Ⅲ象限角-2000°是第Ⅱ象限角等

四、關(guān)于終邊相同的角

1.觀察:390°,-330°角,它們的終邊都與30°角的終邊相同

2.終邊相同的角都可以表示成一個(gè)0°到360°的角與個(gè)周角的和

390°=30°+360°

-330°=30°-360°30°=30°+0×360°

1470°=30°+4×360°

-1770°=30°-5×360°

3.所有與a終邊相同的角連同a在內(nèi)可以構(gòu)成一個(gè)集合

即:任何一個(gè)與角a終邊相同的角,都可以表示成角a與整數(shù)個(gè)周角的和

4.例一(P5略)

五、小結(jié):1°角的概念的推廣

用“旋轉(zhuǎn)”定義角角的范圍的擴(kuò)大

2°“象限角”與“終邊相同的角”

篇8

教學(xué)目的:(1)通過豐富實(shí)例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

(2)了解構(gòu)成函數(shù)的要素;

(3)會求一些簡單函數(shù)的定義域和值域;

教學(xué)重點(diǎn):理解函數(shù)的模型化思想,用合與對應(yīng)的語言來刻畫函數(shù);

教學(xué)難點(diǎn):符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

教學(xué)過程:

一、引入課題

1.復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;

2.閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

(1)炮彈的射高與時(shí)間的變化關(guān)系問題;

(2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;

(3)“八五”計(jì)劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題

備用實(shí)例:

我國2003年4月份非典疫情統(tǒng)計(jì):

日期222324252627282930

新增確診病例數(shù)1061058910311312698152101

3.引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;

4.根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.

二、新課教學(xué)

(一)函數(shù)的有關(guān)概念

1.函數(shù)的概念:

設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:AB為從集合A到集合B的一個(gè)函數(shù)(function).

記作:y=f(x),x∈A.

其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

注意:

1“y=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

2函數(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.

2.構(gòu)成函數(shù)的三要素:

定義域、對應(yīng)關(guān)系和值域

3.區(qū)間的概念

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

(2)無窮區(qū)間;

(3)區(qū)間的數(shù)軸表示.

4.一次函數(shù)、二次函數(shù)、反比例函數(shù)的定義域和值域討論

(由學(xué)生完成,師生共同分析講評)

(二)典型例題

1.求函數(shù)定義域

課本P20例1

解:(略)

說明:

1函數(shù)的定義域通常由問題的實(shí)際背景確定,如果課前三個(gè)實(shí)例;

2如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;

3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

鞏固練習(xí):課本P22第1題

2.判斷兩個(gè)函數(shù)是否為同一函數(shù)

課本P21例2

解:(略)

說明:

1構(gòu)成函數(shù)三個(gè)要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))

2兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。

鞏固練習(xí):

1課本P22第2題

2判斷下列函數(shù)f(x)與g(x)是否表示同一個(gè)函數(shù),說明理由?

(1)f(x)=(x-1)0;g(x)=1

(2)f(x)=x;g(x)=(3)f(x)=x2;f(x)=(x+1)2

(4)f(x)=|x|;g(x)=(三)課堂練習(xí)

求下列函數(shù)的定義域

(1)(2)(3)(4)(5)(6)三、歸納小結(jié),強(qiáng)化思想

從具體實(shí)例引入了函數(shù)的的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念,介紹了求函數(shù)定義域和判斷同一函數(shù)的典型題目,引入了區(qū)間的概念來表示集合。

推薦期刊