亚洲精品一区二区三区大桥未久_亚洲春色古典小说自拍_国产人妻aⅴ色偷_国产精品一区二555

數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8篇

時(shí)間:2023-03-08 14:55:55

緒論:在尋找寫(xiě)作靈感嗎?愛(ài)發(fā)表網(wǎng)為您精選了8篇數(shù)學(xué)知識(shí)點(diǎn)總結(jié),愿這些內(nèi)容能夠啟迪您的思維,激發(fā)您的創(chuàng)作熱情,歡迎您的閱讀與分享!

數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

篇1

初中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)如下。

1、代數(shù)部分:有理數(shù)、無(wú)理數(shù)、實(shí)數(shù)整式、分式、二次根式一元一次方程、一元二次方程、二(三)元一次方程組、二元二次方程組、分式方程、一元一次不等式函數(shù)(一次函數(shù)、二次函數(shù)、反比例函數(shù))

2、幾何部分:線段、角相交線、平行線三角形、四邊形、相似形、圓。

(來(lái)源:文章屋網(wǎng) )

篇2

7年級(jí)數(shù)學(xué)知識(shí)點(diǎn)第一章 有理數(shù)

1.1正數(shù)和負(fù)數(shù)

以前學(xué)過(guò)的0以外的數(shù)前面加上負(fù)號(hào)“-”的書(shū)叫做負(fù)數(shù)。

以前學(xué)過(guò)的0以外的數(shù)叫做正數(shù)。

數(shù)0既不是正數(shù)也不是負(fù)數(shù),0是正數(shù)與負(fù)數(shù)的分界。

在同一個(gè)問(wèn)題中,分別用正數(shù)和負(fù)數(shù)表示的量具有相反的意義

1.2有理數(shù)

1.2.1有理數(shù)

正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)。

整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。

1.2.2數(shù)軸

規(guī)定了原點(diǎn)、正方向、單位長(zhǎng)度的直線叫做數(shù)軸。

數(shù)軸的作用:所有的有理數(shù)都可以用數(shù)軸上的點(diǎn)來(lái)表達(dá)。

注意事項(xiàng):⑴數(shù)軸的原點(diǎn)、正方向、單位長(zhǎng)度三要素,缺一不可。

⑵同一根數(shù)軸,單位長(zhǎng)度不能改變。

一般地,設(shè)是一個(gè)正數(shù),則數(shù)軸上表示a的點(diǎn)在原點(diǎn)的右邊,與原點(diǎn)的距離是a個(gè)單位長(zhǎng)度;表示數(shù)-a的點(diǎn)在原點(diǎn)的左邊,與原點(diǎn)的距離是a個(gè)單位長(zhǎng)度。

1.2.3相反數(shù)

只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù)。

數(shù)軸上表示相反數(shù)的兩個(gè)點(diǎn)關(guān)于原點(diǎn)對(duì)稱。

在任意一個(gè)數(shù)前面添上“-”號(hào),新的數(shù)就表示原數(shù)的相反數(shù)。

1.2.4絕對(duì)值

一般地,數(shù)軸上表示數(shù)a的點(diǎn)與原點(diǎn)的距離叫做數(shù)a的絕對(duì)值。

一個(gè)正數(shù)的絕對(duì)值是它的本身;一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù);0的絕對(duì)值是0。

在數(shù)軸上表示有理數(shù),它們從左到右的順序,就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。

比較有理數(shù)的大小:⑴正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。

⑵兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。

1.3有理數(shù)的加減法

1.3.1有理數(shù)的加法

有理數(shù)的加法法則:

⑴同號(hào)兩數(shù)相加,取相同的符號(hào),并把絕對(duì)值相加。

⑵絕對(duì)值不相等的異號(hào)兩數(shù)相加,取絕對(duì)值較大的加數(shù)的符號(hào),并用較大的絕對(duì)值減去較小的絕對(duì)值?;橄喾磾?shù)的兩個(gè)數(shù)相加得0。

⑶一個(gè)數(shù)同0相加,仍得這個(gè)數(shù)。

兩個(gè)數(shù)相加,交換加數(shù)的位置,和不變。

加法交換律:a+b=b+a

三個(gè)數(shù)相加,先把前面兩個(gè)數(shù)相加,或者先把后兩個(gè)數(shù)相加,和不變。

加法結(jié)合律:(a+b)+c=a+(b+c)

1.3.2有理數(shù)的減法

有理數(shù)的減法可以轉(zhuǎn)化為加法來(lái)進(jìn)行。

有理數(shù)減法法則:

減去一個(gè)數(shù),等于加這個(gè)數(shù)的相反數(shù)。

a-b=a+(-b)

1.4有理數(shù)的乘除法

1.4.1有理數(shù)的乘法

有理數(shù)乘法法則:

兩數(shù)相乘,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相乘。

任何數(shù)同0相乘,都得0。

乘積是1的兩個(gè)數(shù)互為倒數(shù)。

幾個(gè)不是0的數(shù)相乘,負(fù)因數(shù)的個(gè)數(shù)是偶數(shù)時(shí),積是正數(shù);負(fù)因數(shù)的個(gè)數(shù)是奇數(shù)時(shí),積是負(fù)數(shù)。

兩個(gè)數(shù)相乘,交換因數(shù)的位置,積相等。

ab=ba

三個(gè)數(shù)相乘,先把前兩個(gè)數(shù)相乘,或者先把后兩個(gè)數(shù)相乘,積相等。

(ab)c=a(bc)

一個(gè)數(shù)同兩個(gè)數(shù)的和相乘,等于把這個(gè)數(shù)分別同這兩個(gè)數(shù)相乘,再把積相加。

a(b+c)=ab+ac

數(shù)字與字母相乘的書(shū)寫(xiě)規(guī)范:

⑴數(shù)字與字母相乘,乘號(hào)要省略,或用“”

⑵數(shù)字與字母相乘,當(dāng)系數(shù)是1或-1時(shí),1要省略不寫(xiě)。

⑶帶分?jǐn)?shù)與字母相乘,帶分?jǐn)?shù)應(yīng)當(dāng)化成假分?jǐn)?shù)。

用字母x表示任意一個(gè)有理數(shù),2與x的乘積記為2x,3與x的乘積記為3x,則式子2x+3x是2x與3x的和,2x與3x叫做這個(gè)式子的項(xiàng),2和3分別是著兩項(xiàng)的系數(shù)。

一般地,合并含有相同字母因數(shù)的式子時(shí),只需將它們的系數(shù)合并,所得結(jié)果作為系數(shù),再乘字母因數(shù),即

ax+bx=(a+b)x

上式中x是字母因數(shù),a與b分別是ax與bx這兩項(xiàng)的系數(shù)。

去括號(hào)法則:

括號(hào)前是“+”,把括號(hào)和括號(hào)前的“+”去掉,括號(hào)里各項(xiàng)都不改變符號(hào)。

括號(hào)前是“-”,把括號(hào)和括號(hào)前的“-”去掉,括號(hào)里各項(xiàng)都改變符號(hào)。

括號(hào)外的因數(shù)是正數(shù),去括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)式子相應(yīng)各項(xiàng)的符號(hào)相同;括號(hào)外的因數(shù)是負(fù)數(shù),去括號(hào)后式子各項(xiàng)的符號(hào)與原括號(hào)內(nèi)式子相應(yīng)各項(xiàng)的符號(hào)相反。

1.4.2有理數(shù)的除法

有理數(shù)除法法則:

除以一個(gè)不等于0的數(shù),等于乘這個(gè)數(shù)的倒數(shù)。

a÷b=a (b≠0)

兩數(shù)相除,同號(hào)得正,異號(hào)得負(fù),并把絕對(duì)值相除。0除以任何一個(gè)不等于0的數(shù),都得0。

因?yàn)橛欣頂?shù)的除法可以化為乘法,所以可以利用乘法的運(yùn)算性質(zhì)簡(jiǎn)化運(yùn)算。乘除混合運(yùn)算往往先將除法化成乘法,然后確定積的符號(hào),最后求出結(jié)果。

1.5有理數(shù)的乘方

1.5.1乘方

求n個(gè)相同因數(shù)的積的運(yùn)算,叫做乘方,乘方的結(jié)果叫做冪。在an中,a叫做底數(shù),n叫做指數(shù),當(dāng)an看作a的n次方的結(jié)果時(shí),也可以讀作a的n次冪。

負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。

正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

有理數(shù)混合運(yùn)算的運(yùn)算順序:

⑴先乘方,再乘除,最后加減;

⑵同級(jí)運(yùn)算,從左到右進(jìn)行;

⑶如有括號(hào),先做括號(hào)內(nèi)的運(yùn)算,按小括號(hào)、中括號(hào)、大括號(hào)依次進(jìn)行

1.5.2科學(xué)記數(shù)法

把一個(gè)大于10的數(shù)表示成a×10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學(xué)記數(shù)法。

用科學(xué)記數(shù)法表示一個(gè)n位整數(shù),其中10的指數(shù)是n-1。

1.5.3近似數(shù)和有效數(shù)字

接近實(shí)際數(shù)目,但與實(shí)際數(shù)目還有差別的數(shù)叫做近似數(shù)。

精確度:一個(gè)近似數(shù)四舍五入到哪一位,就說(shuō)精確到哪一位。

從一個(gè)數(shù)的左邊第一個(gè)非0 數(shù)字起,到末位數(shù)字止,所有數(shù)字都是這個(gè)數(shù)的有效數(shù)字。

對(duì)于用科學(xué)記數(shù)法表示的數(shù)a×10n,規(guī)定它的有效數(shù)字就是a中的有效數(shù)字。

7年級(jí)數(shù)學(xué)知識(shí)點(diǎn)第二章 一元一次方程

2.1從算式到方程

2.1.1一元一次方程

含有未知數(shù)的等式叫做方程。

只含有一個(gè)未知數(shù)(元),未知數(shù)的指數(shù)都是1(次),這樣的方程叫做一元一次方程。

分析實(shí)際問(wèn)題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是數(shù)學(xué)解決實(shí)際問(wèn)題的一種方法。

解方程就是求出使方程中等號(hào)左右兩邊相等的未知數(shù)的值,這個(gè)值就是方程的解。

2.1.2等式的性質(zhì)

等式的性質(zhì)1 等式兩邊加(或減)同一個(gè)數(shù)(或式子),結(jié)果仍相等。

等式的性質(zhì)2 等式兩邊乘同一個(gè)數(shù),或除以同一個(gè)不為0的數(shù),結(jié)果仍相等。

2.2從古老的代數(shù)書(shū)說(shuō)起——一元一次方程的討論⑴

把等式一邊的某項(xiàng)變號(hào)后移到另一邊,叫做移項(xiàng)。

2.3從“買(mǎi)布問(wèn)題”說(shuō)起——一元一次方程的討論⑵

方程中有帶括號(hào)的式子時(shí),去括號(hào)的方法與有理數(shù)運(yùn)算中括號(hào)類似。

解方程就是要求出其中的未知數(shù)(例如x),通過(guò)去分母、去括號(hào)、移項(xiàng)、合并、系數(shù)化為1等步驟,就可以使一元一次方程逐步向著x=a的形式轉(zhuǎn)化,這個(gè)過(guò)程主要依據(jù)等式的性質(zhì)和運(yùn)算律等。

去分母:

⑴具體做法:方程兩邊都乘各分母的最小公倍數(shù)

⑵依據(jù):等式性質(zhì)2

⑶注意事項(xiàng):①分子打上括號(hào)

篇3

2021年高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)你知道嗎?高中數(shù)學(xué)在學(xué)習(xí)的過(guò)程中,有很多知識(shí)點(diǎn)??键c(diǎn)。共同閱讀2021年高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié),請(qǐng)您閱讀!

高考數(shù)學(xué)的答題順序是什么高考數(shù)學(xué)的答題順序:先易后難

就是先做簡(jiǎn)單題,再做綜合題,應(yīng)根據(jù)自己的實(shí)際,果斷跳過(guò)啃不動(dòng)的題目,從易到難,也要注意認(rèn)真對(duì)待每一道題,力求有效,不能走馬觀花,有難就退,傷害解題情緒。

高考數(shù)學(xué)的答題順序:先熟后生

通覽全卷,可以得到許多有利的積極因素,也會(huì)看到一些不利之處,對(duì)后者,不要驚慌失措,應(yīng)想到試題偏難對(duì)所有考生也難,通過(guò)這種暗示,確保情緒穩(wěn)定,對(duì)全卷整體把握之后,就可實(shí)施先熟后生的方法,即先做那些內(nèi)容掌握比較到家、題型結(jié)構(gòu)比較熟悉、解題思路比較清晰的題目。這樣,在拿下熟題的同時(shí),可以使思維流暢、超常發(fā)揮,達(dá)到拿下中高檔題目的目的。

高考數(shù)學(xué)的答題順序:先同后異

先做同科同類型的題目,思考比較集中,知識(shí)和方法的溝通比較容易,有利于提高單位時(shí)間的效益。高考題一般要求較快地進(jìn)行“興奮灶”的轉(zhuǎn)移,而“先同后異”,可以避免“興奮灶”過(guò)急、過(guò)頻的跳躍,從而減輕大腦負(fù)擔(dān),保持有效精力。

點(diǎn)擊查看:高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)及復(fù)習(xí)資料

高考數(shù)學(xué)的答題順序:先小后大

小題一般是信息量少、運(yùn)算量小,易于把握,不要輕易放過(guò),應(yīng)爭(zhēng)取在大題之前盡快解決,從而為解決大題贏得時(shí)間,創(chuàng)造一個(gè)寬松的心理基矗

高考數(shù)學(xué)的答題順序:先點(diǎn)后面

近年的高考數(shù)學(xué)解答題多呈現(xiàn)為多問(wèn)漸難式的“梯度題”,解答時(shí)不必一氣審到底,應(yīng)走一步解決一步,而前面問(wèn)題的解決又為后面問(wèn)題準(zhǔn)備了思維基礎(chǔ)和解題條件,所以要步步為營(yíng),由點(diǎn)到面6.先高后低。即在考試的后半段時(shí)間,要注重時(shí)間效益,如估計(jì)兩題都會(huì)做,則先做高分題;估計(jì)兩題都不易,則先就高分題實(shí)施“分段得分”,以增加在時(shí)間不足前提下的得分。

高考數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)復(fù)習(xí)忌諱一

一忌“多而不精,顧此失彼”

許多同學(xué)(更多的是家長(zhǎng))為了在高考中領(lǐng)先于其它人,總是絞盡腦汁想方設(shè)法要比別人學(xué)得多,這無(wú)疑是件好事。但他們最后所采用的方法卻往往是對(duì)他們最為不利的,那就是:購(gòu)買(mǎi)和選擇大量的復(fù)習(xí)資料和講義,花去比別人多得多的時(shí)間,沒(méi)日沒(méi)夜的做,他們的精神非??少F,他們的毅力非常驚人,其效果卻讓他們自己都非常傷心失望。有些家長(zhǎng)甚至說(shuō):“我的小孩已經(jīng)盡力了,還是沒(méi)有進(jìn)步,一定是太笨了”。其實(shí),他們犯了很多科學(xué)性的錯(cuò)誤,卻不自知。

1.高中階段所學(xué)的知識(shí)具有一定的范圍,再多的復(fù)習(xí)資料、講義,也只不過(guò)是這一范圍內(nèi)的知識(shí)的重復(fù)和變形。

你所做的很多題目都代表相同的知識(shí)點(diǎn),代表相同的方法,對(duì)于那些你已經(jīng)掌握的`知識(shí)、方法,做再多的題目還是于事無(wú)補(bǔ),簡(jiǎn)單無(wú)聊的重復(fù)除了使你身陷題海,不能自拔,耗盡了你的精力不算,還使你失去了信心,因?yàn)槟惚葎e人努力,卻沒(méi)有得到相應(yīng)的回報(bào)。

2.每一套復(fù)習(xí)資料都經(jīng)過(guò)編纂人員的反復(fù)推敲,仔細(xì)研究,都很系統(tǒng)地將相應(yīng)的知識(shí)點(diǎn)按照一定的規(guī)律和方法融會(huì)于其中。

所以同學(xué)只要研究好一兩套具有代表性的復(fù)習(xí)資料,你該學(xué)的一定都能學(xué)到,該會(huì)的都能學(xué)會(huì)。

3.“丟了西瓜,撿了芝麻”的故事告訴我們,不能太貪心,這本資料也好,那本資料也不錯(cuò),好的資料太多了,同學(xué)們的精力是有限的,而題目是無(wú)限的,以有限的精力去做無(wú)限的題目,永遠(yuǎn)沒(méi)有盡頭,必然導(dǎo)致你對(duì)每一套資料都沒(méi)有很好的完成,都沒(méi)有系統(tǒng)地研究,反而會(huì)因?yàn)楦鞣N資料的風(fēng)格、體系的不同,而使你的學(xué)習(xí)失去全面性、系統(tǒng)性,多而不精,顧此失彼,是高三復(fù)習(xí)的大敵。

復(fù)習(xí)忌諱二

二忌“學(xué)而不思,囫圇吞棗”

導(dǎo)致很多同學(xué)身陷題海,不能自拔的另一個(gè)重要原因,就是“學(xué)而不思”,題目是知識(shí)的載體,有的同學(xué)做了很多題目,卻仍然沒(méi)有明白它們代表同一知識(shí)點(diǎn),不但不能舉一反三,甚至舉三不能反一,其真正的原因,是他們沒(méi)有養(yǎng)成思考、總結(jié)的習(xí)慣。華羅庚先生說(shuō)過(guò):“譬如我們讀一本書(shū),厚厚的一本,再加上我們自己的注解,就愈讀愈厚,我們自己知道的東西也就‘由薄到厚’了”?!啊畬W(xué)’并不到此為止,‘懂’并不到此為透,所謂由厚到薄是消化提煉的過(guò)程,即把那些學(xué)到的東西,經(jīng)過(guò)咀嚼、消化,融會(huì)貫通,提煉出關(guān)鍵性的東西來(lái)?!边@段話充分說(shuō)明了思考在學(xué)習(xí)過(guò)程中的重要性。以下是“學(xué)而不思”的幾種具體表現(xiàn),也許你就有過(guò)這樣的經(jīng)歷。

1.上課以為自己聽(tīng)懂了,可你仍然作業(yè)不會(huì)做,去問(wèn)老師的時(shí)候,老師告訴你,這就是上課講的例題或例題的變形;總是感到有做不完的題目,覺(jué)得每個(gè)題目都很新鮮,常常遇到那種好象從未見(jiàn)過(guò)的題型;

2.從來(lái)不去想,怎樣發(fā)展自己的強(qiáng)項(xiàng),怎樣彌補(bǔ)自己的不足,只知道老師叫干什么就干什么,布置了作業(yè)就做,發(fā)了試卷就考。

3.考試的時(shí)候突然覺(jué)得這就是老師講的某個(gè)典型的東西,卻有那種話到嘴邊說(shuō)不出的感覺(jué),或者豁然開(kāi)朗、猛然醒悟的感覺(jué);

4.當(dāng)老師要你總結(jié)一類題目的解題方法和策略或要你總結(jié)某一章所學(xué)內(nèi)容的時(shí)候,你總是支支唔唔無(wú)話可說(shuō);

5.一個(gè)自己所犯的錯(cuò)誤,只是輕輕的告訴自己,下次要注意,只簡(jiǎn)單地歸結(jié)為粗心,但下次還是犯同樣的錯(cuò)誤。

學(xué)而不思,往往就囫圇吞棗,對(duì)于外界的東西,來(lái)者不拒,只知接受,不會(huì)挑選,只知記憶,不會(huì)總結(jié)。你沒(méi)有在學(xué)習(xí)過(guò)程中“加入自己的注解”,怎能做到華羅庚先生說(shuō)的“由薄到厚”,你不會(huì)“提煉出關(guān)鍵性的東西來(lái)”,就更不能“由厚到薄”,找到問(wèn)題地本質(zhì),那么,你的學(xué)習(xí)就很難取得質(zhì)的飛躍。

復(fù)習(xí)忌諱三

三忌“好高騖遠(yuǎn),忽視雙基”

很多同學(xué)都知道好高務(wù)遠(yuǎn)就是眼高手低、不自量力的代名詞,但卻不知道什么是好高騖遠(yuǎn)。

有的同學(xué)由于自己覺(jué)得成績(jī)很好,所以,總認(rèn)為基礎(chǔ)的東西,太簡(jiǎn)單,研究雙基是浪費(fèi)時(shí)間;有的同學(xué)對(duì)自己的定位較高,認(rèn)為自己研究的應(yīng)該是那些高于其它同學(xué)的,別人覺(jué)得有困難的東西;有的同學(xué)總是嫌老師講得太簡(jiǎn)單或者太慢,甚至有的同學(xué)成績(jī)不怎么樣,也瞧不起基礎(chǔ)的東西。其實(shí),這些都是好高騖遠(yuǎn)。

最深刻的道理,往往存在于最簡(jiǎn)單的事實(shí)之中。一切高樓大廈都是平地而起的,一切高深的理論,都是由基礎(chǔ)理論總結(jié)出來(lái)的。同學(xué)們可以仔細(xì)地分析老師講的課,無(wú)論是多難的題目,最后總是深入淺出,歸結(jié)到課本上的知識(shí)點(diǎn),無(wú)論是多簡(jiǎn)單的題目,總能指出其中所蘊(yùn)藏的科學(xué)道理,而大多數(shù)同學(xué),只聽(tīng)到老師講的是題目,常常認(rèn)為此題已懂,不需要再聽(tīng),而忽略了老師闡述“來(lái)自基礎(chǔ),回歸基礎(chǔ)”的道理的關(guān)鍵地方。所以大家一定要重視雙基,千萬(wàn)別好高務(wù)遠(yuǎn)。

四忌“敷衍了事,得過(guò)且過(guò)”

以下是對(duì)某校2020屆高三300名同學(xué)關(guān)于作業(yè)問(wèn)題的兩項(xiàng)調(diào)查:(數(shù)值為人數(shù)比例:做到的/總?cè)藬?shù))

你做作業(yè)是為了什么?

檢測(cè)自己究竟學(xué)會(huì)了沒(méi)有占91/30.33%

因?yàn)槔蠋熞獧z查占143/47.67%

怕被家長(zhǎng)、老師批評(píng)的占38/12.67%

說(shuō)不清什么原因占28/9.33%

你的作業(yè)是怎樣完成的?

復(fù)習(xí),再聯(lián)系課上內(nèi)容獨(dú)立完成占55/18.33%

高中高三數(shù)學(xué)的知識(shí)點(diǎn)歸納一、直線與圓:

1、直線的傾斜角

的范圍是

在平面直角坐標(biāo)系中,對(duì)于一條與 軸相交的直線 ,如果把 軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線 重合時(shí)所轉(zhuǎn)的最小正角記為, 就叫做直線的傾斜角。當(dāng)直線 與軸重合或平行時(shí),規(guī)定傾斜角為0;

2、斜率:已知直線的傾斜角為,且90,則斜率k=tan.

過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=( y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

3、直線方程:⑴點(diǎn)斜式:直線過(guò)點(diǎn)

斜率為 ,則直線方程為 ,

⑵斜截式:直線在 軸上的截距為 和斜率,則直線方程為

4、,

,① ∥ , ; ② .

直線 與直線 的位置關(guān)系:

(1)平行 A1/A2=B1/B2 注意檢驗(yàn)(2)垂直 A1A2+B1B2=0

5、點(diǎn)

到直線 的距離公式 ;

兩條平行線 與 的距離是

6、圓的標(biāo)準(zhǔn)方程:

.⑵圓的一般方程:

注意能將標(biāo)準(zhǔn)方程化為一般方程

7、過(guò)圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題.①

相離② 相切③ 相交

9、解決直線與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的`平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形)

直線與圓相交所得弦長(zhǎng)

二、圓錐曲線方程:

1、橢圓:

①方程 (a0)注意還有一個(gè);②定義: |PF1|+|PF2|=2a ③ e= ④長(zhǎng)軸長(zhǎng)為2a,短軸長(zhǎng)為2b,焦距為2c;a2=b2+c2 ;

2、雙曲線:①方程

(a,b0) 注意還有一個(gè);②定義: ||PF1|-|PF2||=2a ③e= ;④實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距為2c;漸進(jìn)線或 c2=a2+b2

3、拋物線

:①方程y2=2px注意還有三個(gè),能區(qū)別開(kāi)口方向; ②定義:|PF|=d焦點(diǎn)F( ,0),準(zhǔn)線x=- ;③焦半徑 ;焦點(diǎn)弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長(zhǎng)公式:

5、注意解析幾何與向量結(jié)合問(wèn)題:1、,

.(1) ;(2) .

2、數(shù)量積的定義:已知兩個(gè)非零向量a和b,它們的夾角為,則數(shù)量|a||b|cos叫做a與b的數(shù)量積,記作ab,即

3、模的計(jì)算:|a|=

篇4

讀書(shū)不是為了考試,本來(lái)考試是一件正確的事情,它是用來(lái)檢查我們對(duì)學(xué)習(xí)過(guò)的知識(shí)是否懂了,懂了多少 多深分?jǐn)?shù)只是反映了我們對(duì)學(xué)過(guò)知識(shí)的掌握程度,下面小編給大家分享一些六年級(jí)上冊(cè)數(shù)學(xué)知識(shí)總結(jié),希望能夠幫助大家,歡迎閱讀!

六年級(jí)上冊(cè)數(shù)學(xué)知識(shí)總結(jié)1圓

一、圓的特征

1、圓是平面內(nèi)封閉曲線圍成的平面圖形。

2、圓的特征:外形美觀,易滾動(dòng)。

3、圓心O:圓中心的點(diǎn)叫做圓心.圓心一般用字母O表示。

圓多次對(duì)折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。

半徑r:連接圓心到圓上任意一點(diǎn)的線段叫做半徑。在同一個(gè)圓里,有無(wú)數(shù)條半徑,且所有的半徑都相等。半徑確定圓的大小。

直徑d:通過(guò)圓心且兩端都在圓上的線段叫做直徑。在同一個(gè)圓里,有無(wú)數(shù)條直徑,且所有的直徑都相等。直徑是圓內(nèi)最長(zhǎng)的線段。

同圓或等圓內(nèi)直徑是半徑的2倍:d=2r 或 r=d÷2

4、等圓:半徑相等的圓叫做同心圓,等圓通過(guò)平移可以完全重合。

同心圓:圓心重合、半徑不等的兩個(gè)圓叫做同心圓。

5、圓是軸對(duì)稱圖形:如果一個(gè)圖形沿著一條直線對(duì)折,兩側(cè)的圖形能夠完全重合,這個(gè)圖形是軸對(duì)稱圖形。

折痕所在的直線叫做對(duì)稱軸。

有一條對(duì)稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。

有二條對(duì)稱軸的圖形:長(zhǎng)方形

有三條對(duì)稱軸的圖形:等邊三角形

有四條對(duì)稱軸的圖形:正方形

有無(wú)條對(duì)稱軸的圖形:圓,圓環(huán)

6、畫(huà)圓

(1)圓規(guī)兩腳間的距離是圓的半徑。(2)畫(huà)圓步驟:定半徑、定圓心、旋轉(zhuǎn)一周。

二、圓的周長(zhǎng):圍成圓的曲線的長(zhǎng)度叫做圓的周長(zhǎng),周長(zhǎng)用字母C表示。

1、圓的周長(zhǎng)總是直徑的三倍多一些。

2、圓周率:圓的周長(zhǎng)與直徑的比值是一個(gè)固定值,叫做圓周率,用字母π表示。

即:圓周率π = 周長(zhǎng)÷直徑≈3.14

所以,圓的周長(zhǎng)(c)=直徑(d)×圓周率(π)—周長(zhǎng)公式:c=πd, c=2πr

圓周率π是一個(gè)無(wú)限不循環(huán)小數(shù),3.14是近似值。

3、周長(zhǎng)的變化的規(guī)律:半徑擴(kuò)大多少倍直徑也擴(kuò)大多少倍,周長(zhǎng)擴(kuò)大的倍數(shù)與半徑、直徑擴(kuò)大的倍數(shù)相同。

4、半圓周長(zhǎng)=圓周長(zhǎng)一半+直徑=

πr+d

三、圓的面積s

1、圓面積公式的推導(dǎo)

如圖把一個(gè)圓沿直徑等分成若干份,剪開(kāi)拼成長(zhǎng)方形,份數(shù)越多拼成的圖像越接近長(zhǎng)方形。

圓的半徑=長(zhǎng)方形的寬

圓的周長(zhǎng)的一半=長(zhǎng)方形的長(zhǎng)

長(zhǎng)方形面積=長(zhǎng)×寬

所以:圓的面積=圓的周長(zhǎng)的一半(πr)×圓的半徑(r)

S圓 =πr×r=πr2

2、幾種圖形,在面積相等的情況下,圓的周長(zhǎng)最短,而長(zhǎng)方形的周長(zhǎng)最長(zhǎng);

反之,在周長(zhǎng)相等的情況下,圓的面積則最大,而長(zhǎng)方形的面積則最小。

周長(zhǎng)相同時(shí),圓面積最大,利用這一特點(diǎn),籃子、盤(pán)子做成圓形。

3、圓面積的變化的規(guī)律:半徑擴(kuò)大多少倍,直徑、周長(zhǎng)也同時(shí)擴(kuò)大多少倍,圓面積擴(kuò)大的倍數(shù)是半徑、直徑擴(kuò)大的倍數(shù)的平方倍。

4、環(huán)形面積

=大圓–小圓=πR2-πr2

扇形面積=πr2×n÷360(n表示扇形圓心角的度數(shù))

5、跑道:每條跑道的周長(zhǎng)等于兩半圓跑道合成的圓的周長(zhǎng)加上兩條直跑道的和。

因?yàn)閮蓷l直跑道長(zhǎng)度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。

一個(gè)圓的半徑增加a厘米,周長(zhǎng)就增加2πa厘米。

一個(gè)圓的直徑增加b厘米,周長(zhǎng)就增加πb厘米。

6、任意一個(gè)正方形的內(nèi)切圓即最大圓的直徑是正方形的邊長(zhǎng),它們的面積比是4∶π。

7、常用數(shù)據(jù)

π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7

六年級(jí)上冊(cè)數(shù)學(xué)知識(shí)總結(jié)2比

比:兩個(gè)數(shù)相除也叫兩個(gè)數(shù)的比

1、比式中,比號(hào)(∶)前面的數(shù)叫前項(xiàng),比號(hào)后面的項(xiàng)叫做后項(xiàng),比號(hào)相當(dāng)于除號(hào),比的前項(xiàng)除以后項(xiàng)的商叫做比值。

連比如:3:4:5讀作:3比4比5

2、比表示的是兩個(gè)數(shù)的關(guān)系,可以用分?jǐn)?shù)表示,寫(xiě)成分?jǐn)?shù)的形式,讀作幾比幾。

例:12∶20= =12÷20= =0.6 12∶20讀作:12比20

區(qū)分比和比值:比值是一個(gè)數(shù),通常用分?jǐn)?shù)表示,也可以是整數(shù)、小數(shù)。

比是一個(gè)式子,表示兩個(gè)數(shù)的關(guān)系,可以寫(xiě)成比,也可以寫(xiě)成分?jǐn)?shù)的形式。

3、比的基本性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以相同的數(shù)(0除外),比值不變。

4、化簡(jiǎn)比:化簡(jiǎn)之后結(jié)果還是一個(gè)比,不是一個(gè)數(shù)。

(1)、用比的前項(xiàng)和后項(xiàng)同時(shí)除以它們的最大公約數(shù)。

(2)、兩個(gè)分?jǐn)?shù)的比,用前項(xiàng)后項(xiàng)同時(shí)乘分母的最小公倍數(shù),再按化簡(jiǎn)整數(shù)比的方法來(lái)化簡(jiǎn)。也可以求出比值再寫(xiě)成比的形式。

(3)、兩個(gè)小數(shù)的比,向右移動(dòng)小數(shù)點(diǎn)的位置,也是先化成整數(shù)比。

5、求比值:把比號(hào)寫(xiě)成除號(hào)再計(jì)算,結(jié)果是一個(gè)數(shù)(或分?jǐn)?shù)),相當(dāng)于商,不是比。

6、比和除法、分?jǐn)?shù)的區(qū)別:

除法:被除數(shù)除號(hào)(÷) 除數(shù)(不能為0) 商不變性質(zhì) 除法是一種運(yùn)算

分?jǐn)?shù):分子分?jǐn)?shù)線(—)分母(不能為0) 分?jǐn)?shù)的基本性質(zhì) 分?jǐn)?shù)是一個(gè)數(shù)

比:前項(xiàng)比號(hào)(∶) 后項(xiàng)(不能為0) 比的基本性質(zhì) 比表示兩個(gè)數(shù)的關(guān)系

商不變性質(zhì):被除數(shù)和除數(shù)同時(shí)乘或除以相同的數(shù)(0除外),商不變。

分?jǐn)?shù)的基本性質(zhì):分子和分母同時(shí)乘或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。

分?jǐn)?shù)除法和比的應(yīng)用

1、已知單位“1”的量用乘法。

2、未知單位“1”的量用除法。

3、分?jǐn)?shù)應(yīng)用題基本數(shù)量關(guān)系(把分?jǐn)?shù)看成比)

(1)甲是乙的幾分之幾?

甲=乙×幾分之幾 乙=甲÷幾分之幾 幾分之幾=甲÷乙

(2)甲比乙多(少)幾分之幾?

4、按比例分配:把一個(gè)量按一定的比分配的方法叫做按比例分配。

5、畫(huà)線段圖:

(1)找出單位“1”的量,先畫(huà)出單位“1”,標(biāo)出已知和未知。

(2)分析數(shù)量關(guān)系。(3)找等量關(guān)系。(4)列方程。

兩個(gè)量的關(guān)系畫(huà)兩條線段圖,部分和整體的關(guān)系畫(huà)一條線段圖。

六年級(jí)上冊(cè)數(shù)學(xué)知識(shí)總結(jié)3分?jǐn)?shù)乘法

(一)分?jǐn)?shù)乘法意義:

1、分?jǐn)?shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,就是求幾個(gè)相同加數(shù)的和的簡(jiǎn)便運(yùn)算。

“分?jǐn)?shù)乘整數(shù)”指的是第二個(gè)因數(shù)必須是整數(shù),不能是分?jǐn)?shù)。

2、一個(gè)數(shù)乘分?jǐn)?shù)的意義就是求一個(gè)數(shù)的幾分之幾是多少。

“一個(gè)數(shù)乘分?jǐn)?shù)”指的是第二個(gè)因數(shù)必須是分?jǐn)?shù),不能是整數(shù)。(第一個(gè)因數(shù)是什么都可以)

(二)分?jǐn)?shù)乘法計(jì)算法則:

1、分?jǐn)?shù)乘整數(shù)的運(yùn)算法則是:分子與整數(shù)相乘,分母不變。

(1)為了計(jì)算簡(jiǎn)便能約分的可先約分再計(jì)算。(整數(shù)和分母約分)(2)約分是用整數(shù)和下面的分母約掉最大公因數(shù)。(整數(shù)千萬(wàn)不能與分母相乘,計(jì)算結(jié)果必須是最簡(jiǎn)分?jǐn)?shù))。

2、分?jǐn)?shù)乘分?jǐn)?shù)的運(yùn)算法則是:用分子相乘的積做分子,分母相乘的積做分母。

(分子乘分子,分母乘分母)

(1)如果分?jǐn)?shù)乘法算式中含有帶分?jǐn)?shù),要先把帶分?jǐn)?shù)化成假分?jǐn)?shù)再計(jì)算。

(2)分?jǐn)?shù)化簡(jiǎn)的方法是:分子、分母同時(shí)除以它們的最大公因數(shù)。

(3)在乘的過(guò)程中約分,是把分子、分母中,兩個(gè)可以約分的數(shù)先劃去,再分別在它們的上、下方寫(xiě)出約分后的數(shù)。(約分后分子和分母必須不再含有公因數(shù),這樣計(jì)算后的結(jié)果才是最簡(jiǎn)單分?jǐn)?shù))。

(4)分?jǐn)?shù)的基本性質(zhì):分子、分母同時(shí)乘或者除以一個(gè)相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。

(三)積與因數(shù)的關(guān)系:

一個(gè)數(shù)(0除外)乘大于1的數(shù),積大于這個(gè)數(shù)。a×b=c,當(dāng)b >1時(shí),c>a。

一個(gè)數(shù)(0除外)乘小于1的數(shù),積小于這個(gè)數(shù)。a×b=c,當(dāng)b

一個(gè)數(shù)(0除外)乘等于1的數(shù),積等于這個(gè)數(shù)。a×b=c,當(dāng)b =1時(shí),c=a 。

在進(jìn)行因數(shù)與積的大小比較時(shí),要注意因數(shù)為0時(shí)的特殊情況。

(四)分?jǐn)?shù)乘法混合運(yùn)算

1、分?jǐn)?shù)乘法混合運(yùn)算順序與整數(shù)相同,先乘、除后加、減,有括號(hào)的先算括號(hào)里面的,再算括號(hào)外面的。

2、整數(shù)乘法運(yùn)算定律對(duì)分?jǐn)?shù)乘法同樣適用;

運(yùn)算定律可以使一些計(jì)算簡(jiǎn)便。

乘法交換律:a×b=b×a 乘法結(jié)合律:(a×b)×c=a×(b×c)

乘法分配律:a×(b±c)=a×b±a×c

(五)倒數(shù)的意義:乘積為1的兩個(gè)數(shù)互為倒數(shù)。

1、倒數(shù)是兩個(gè)數(shù)的關(guān)系,它們互相依存,不能單獨(dú)存在。

單獨(dú)一個(gè)數(shù)不能稱為倒數(shù)。(必須說(shuō)清誰(shuí)是誰(shuí)的倒數(shù))

2、判斷兩個(gè)數(shù)是否互為倒數(shù)的唯一標(biāo)準(zhǔn)是:兩數(shù)相乘的積是否為“1”。

例如:a×b=1則a、b互為倒數(shù)。

3、求倒數(shù)的方法:

①求分?jǐn)?shù)的倒數(shù):交換分子、分母的位置。

②求整數(shù)的倒數(shù):整數(shù)分之1。

③求帶分?jǐn)?shù)的倒數(shù):先化成假分?jǐn)?shù),再求倒數(shù)。

④求小數(shù)的倒數(shù):先化成分?jǐn)?shù)再求倒數(shù)。

4、1的倒數(shù)是它本身,因?yàn)?×1=1

0沒(méi)有倒數(shù),因?yàn)槿魏螖?shù)乘0積都是0,且0不能作分母。

5、真分?jǐn)?shù)的倒數(shù)是假分?jǐn)?shù),真分?jǐn)?shù)的倒數(shù)大于1,也大于它本身。

假分?jǐn)?shù)的倒數(shù)小于或等于1。帶分?jǐn)?shù)的倒數(shù)小于1。

(六)分?jǐn)?shù)乘法應(yīng)用題——用分?jǐn)?shù)乘法解決問(wèn)題

1、求一個(gè)數(shù)的幾分之幾是多少?(用乘法)

已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分?jǐn)?shù)相乘。

2、巧找單位“1”的量:在含有分?jǐn)?shù)(分率)的語(yǔ)句中,分率前面的量就是單位“1”對(duì)應(yīng)的量,或者“占”“是”“比”字后面的量是單位“1”。

3、什么是速度?

速度是單位時(shí)間內(nèi)行駛的路程。

速度=路程÷時(shí)間 時(shí)間=路程÷速度 路程=速度×?xí)r間

單位時(shí)間指的是1小時(shí)1分鐘1秒等這樣的大小為1的時(shí)間單位,每分鐘、每小時(shí)、每秒鐘等。

4、求甲比乙多(少)幾分之幾?

多:(甲-乙)÷乙 少:(乙-甲)÷乙

六年級(jí)上冊(cè)數(shù)學(xué)知識(shí)總結(jié)4百分?jǐn)?shù)(一)

一、百分?jǐn)?shù)的意義:表示一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾的數(shù)叫做百分?jǐn)?shù)。百分?jǐn)?shù)又叫百分比或百分率,百分?jǐn)?shù)不能帶單位。

注意:百分?jǐn)?shù)是專門(mén)用來(lái)表示一種特殊的倍比關(guān)系的,表示兩個(gè)數(shù)的比。

1、百分?jǐn)?shù)和分?jǐn)?shù)的區(qū)別和聯(lián)系:

(1)聯(lián)系:都可以用來(lái)表示兩個(gè)量的倍比關(guān)系。

(2)區(qū)別:意義不同:百分?jǐn)?shù)只表示倍比關(guān)系,不表示具體數(shù)量,所以不能帶單位。分?jǐn)?shù)不僅表示倍比關(guān)系,還能帶單位表示具體數(shù)量。百分?jǐn)?shù)的分子可以是小數(shù),分?jǐn)?shù)的分子只可以是整數(shù)。

注意:百分?jǐn)?shù)在生活中應(yīng)用廣泛,所涉及問(wèn)題基本和分?jǐn)?shù)問(wèn)題相同,分母是100的分?jǐn)?shù)并不是百分?jǐn)?shù),必須把分母寫(xiě)成“%”才是百分?jǐn)?shù),所以“分母是100的分?jǐn)?shù)就是百分?jǐn)?shù)”這句話是錯(cuò)誤的?!?”的兩個(gè)0要小寫(xiě),不要與百分?jǐn)?shù)前面的數(shù)混淆。一般來(lái)講,出勤率、成活率、合格率、正確率能達(dá)到100%,出米率、出油率達(dá)不到100%,完成率、增長(zhǎng)了百分之幾等可以超過(guò)100%。一般出粉率在70%、80%,出油率在30%、40%。

2、小數(shù)、分?jǐn)?shù)、百分?jǐn)?shù)之間的互化

(1)百分?jǐn)?shù)化小數(shù):小數(shù)點(diǎn)向左移動(dòng)兩位,去掉“%”。

(2)小數(shù)化百分?jǐn)?shù):小數(shù)點(diǎn)向右移動(dòng)兩位,添上“%”。

(3)百分?jǐn)?shù)化分?jǐn)?shù):先把百分?jǐn)?shù)寫(xiě)成分母是100的分?jǐn)?shù),然后再化簡(jiǎn)成最簡(jiǎn)分?jǐn)?shù)。

(4)分?jǐn)?shù)化百分?jǐn)?shù):分子除以分母得到小數(shù),(除不盡的保留三位小數(shù))然后化成百分?jǐn)?shù)。

(5)小數(shù)化分?jǐn)?shù):把小數(shù)成分母是10、100、1000等的分?jǐn)?shù)再化簡(jiǎn)。

(6)分?jǐn)?shù)化小數(shù):分子除以分母。

二、百分?jǐn)?shù)應(yīng)用題

1、求常見(jiàn)的百分率,如:達(dá)標(biāo)率、及格率、成活率、發(fā)芽率、出勤率等求百分率就是求一個(gè)數(shù)是另一個(gè)數(shù)的百分之幾。

2、求一個(gè)數(shù)比另一個(gè)數(shù)多(或少)百分之幾,實(shí)際生活中,人們常用增加了百分之幾、減少了百分之幾、節(jié)約了百分之幾等來(lái)表示增加、或減少的幅度。

求甲比乙多百分之幾:(甲-乙)÷乙

求乙比甲少百分之幾:(甲-乙)÷甲

3、求一個(gè)數(shù)的百分之幾是多少。

一個(gè)數(shù)(單位“1”)×百分率

4、已知一個(gè)數(shù)的百分之幾是多少,求這個(gè)數(shù)。

部分量÷百分率=一個(gè)數(shù)(單位“1”)

5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十

折扣、成數(shù)=幾分之幾、百分之幾、小數(shù)

八折=八成=十分之八=百分之八十=0.8

八五折=八成五=十分之八點(diǎn)五=百分之八十五=0.85

五折=五成=十分之五=百分之五十=0.5=半價(jià)

6、利率

(1)存入銀行的錢(qián)叫做本金。

(2)取款時(shí)銀行多支付的錢(qián)叫做利息。

(3)利息與本金的比值叫做利率。

利息=本金×利率×?xí)r間

稅后利息=利息-利息的應(yīng)納稅額=利息-利息×5%

注:國(guó)債和教育儲(chǔ)蓄的利息不納稅

7、百分?jǐn)?shù)應(yīng)用題型分類

(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾

(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%

(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%

六年級(jí)上冊(cè)數(shù)學(xué)知識(shí)總結(jié)5扇形統(tǒng)計(jì)圖的意義

1、扇形統(tǒng)計(jì)圖的意義:用整個(gè)圓的面積表示總數(shù),用圓內(nèi)各個(gè)扇形面積表示各部分?jǐn)?shù)量同總數(shù)之間關(guān)系,也就是各部分?jǐn)?shù)量占總數(shù)的百分比,因此也叫百分比圖。

2、常用統(tǒng)計(jì)圖的優(yōu)點(diǎn):

(1)條形統(tǒng)計(jì)圖直觀顯示每個(gè)數(shù)量的多少。

(2)折線統(tǒng)計(jì)圖不僅直觀顯示數(shù)量的增減變化,還可清晰看出各個(gè)數(shù)量的多少。

(3)扇形統(tǒng)計(jì)圖直觀顯示部分和總量的關(guān)系。

數(shù)學(xué)廣角--數(shù)與形

2+4+6+8+10+12+14+16+18+20=(110)

規(guī)律:從2開(kāi)始的n個(gè)連續(xù)偶數(shù)的和等于n×(n+1)。

10×(10+1)=10×11=110

位置與方向(二)

1、什么是數(shù)對(duì)?

數(shù)對(duì):由兩個(gè)數(shù)組成,中間用逗號(hào)隔開(kāi),用括號(hào)括起來(lái)。括號(hào)里面的數(shù)由左至右為列數(shù)和行數(shù),即“先列后行”。

數(shù)對(duì)的作用:確定一個(gè)點(diǎn)的位置。經(jīng)度和緯度就是這個(gè)原理。

2、確定物置的方法:

(1)、先找觀測(cè)點(diǎn);(2)、再定方向(看方向夾角的度數(shù));(3)、最后確定距離(看比例尺)。

描繪路線圖的關(guān)鍵是選好觀測(cè)點(diǎn),建立方向標(biāo),確定方向和路程。

篇5

在除法里,被除數(shù)和除數(shù)同時(shí)擴(kuò)大或者同時(shí)縮小相同的倍,商不變。

二、小數(shù)的性質(zhì)

在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。

三、小數(shù)點(diǎn)位置的移動(dòng)引起小數(shù)大小的變化

1. 小數(shù)點(diǎn)向右移動(dòng)一位,原來(lái)的數(shù)就擴(kuò)大10倍;小數(shù)點(diǎn)向右移動(dòng)兩位,原來(lái)的數(shù)就擴(kuò)大100倍;小數(shù)點(diǎn)向右移動(dòng)三位,原來(lái)的數(shù)就擴(kuò)大1000倍……

2. 小數(shù)點(diǎn)向左移動(dòng)一位,原來(lái)的數(shù)就縮小10倍;小數(shù)點(diǎn)向左移動(dòng)兩位,原來(lái)的數(shù)就縮小100倍;小數(shù)點(diǎn)向左移動(dòng)三位,原來(lái)的數(shù)就縮小1000倍……

3. 小數(shù)點(diǎn)向左移或者向右移位數(shù)不夠時(shí),要用“0"補(bǔ)足位。

四、分?jǐn)?shù)的基本性質(zhì)

分?jǐn)?shù)的分子和分母都乘以或者除以相同的數(shù)(零除外),分?jǐn)?shù)的大小不變。

五、分?jǐn)?shù)與除法的關(guān)系

1. 被除數(shù)÷除數(shù)= 被除數(shù)/除數(shù)

篇6

1、分式的分母不等于零;

2、偶次方根的被開(kāi)方數(shù)大于等于零;

3、對(duì)數(shù)的真數(shù)大于零;

4、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)大于零且不等于1;

5、三角函數(shù)正切函數(shù)y=tanx中x≠kπ+π/2;

6、如果函數(shù)是由實(shí)際意義確定的解析式,應(yīng)依據(jù)自變量的實(shí)際意義確定其取值范圍。

二、函數(shù)的解析式的常用求法:

1、定義法;2、換元法;3、待定系數(shù)法;4、函數(shù)方程法;5、參數(shù)法;6、配方法

三、函數(shù)的值域的常用求法:

1、換元法;2、配方法;3、判別式法;4、幾何法;5、不等式法;6、單調(diào)性法;7、直接法

四、函數(shù)的最值的常用求法:

1、配方法;2、換元法;3、不等式法;4、幾何法;5、單調(diào)性法

五、函數(shù)單調(diào)性的常用結(jié)論:

1、若f(x),g(x)均為某區(qū)間上的增(減)函數(shù),則f(x)+g(x)在這個(gè)區(qū)間上也為增(減)函數(shù)

2、若f(x)為增(減)函數(shù),則-f(x)為減(增)函數(shù)

3、若f(x)與g(x)的單調(diào)性相同,則f[g(x)]是增函數(shù);若f(x)與g(x)的單調(diào)性不同,則f[g(x)]是減函數(shù)。

4、奇函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相同,偶函數(shù)在對(duì)稱區(qū)間上的單調(diào)性相反。

5、常用函數(shù)的單調(diào)性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數(shù)圖象。

六、函數(shù)奇偶性的常用結(jié)論:

1、如果一個(gè)奇函數(shù)在x=0處有定義,則f(0)=0,如果一個(gè)函數(shù)y=f(x)既是奇函數(shù)又是偶函數(shù),則f(x)=0(反之不成立)

2、兩個(gè)奇(偶)函數(shù)之和(差)為奇(偶)函數(shù);之積(商)為偶函數(shù)。

3、一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的積(商)為奇函數(shù)。

篇7

撰寫(xiě)人:___________

期:___________

2021年初一下冊(cè)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)北師大版【一】

多項(xiàng)式除以單項(xiàng)式

一、單項(xiàng)式

1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項(xiàng)式。

2、單項(xiàng)式的數(shù)字因數(shù)叫做單項(xiàng)式的系數(shù)。

3、單項(xiàng)式中所有字母的指數(shù)和叫做單項(xiàng)式的次數(shù)。

4、單獨(dú)一個(gè)數(shù)或一個(gè)字母也是單項(xiàng)式。

5、只含有字母因式的單項(xiàng)式的系數(shù)是1或―1。

6、單獨(dú)的一個(gè)數(shù)字是單項(xiàng)式,它的系數(shù)是它本身。

7、單獨(dú)的一個(gè)非零常數(shù)的次數(shù)是0。

8、單項(xiàng)式中只能含有乘法或乘方運(yùn)算,而不能含有加、減等其他運(yùn)算。

9、單項(xiàng)式的系數(shù)包括它前面的符號(hào)。

10、單項(xiàng)式的系數(shù)是帶分?jǐn)?shù)時(shí),應(yīng)化成假分?jǐn)?shù)。

11、單項(xiàng)式的系數(shù)是1或―___時(shí),通常省略數(shù)字“___”。

12、單項(xiàng)式的次數(shù)僅與字母有關(guān),與單項(xiàng)式的系數(shù)無(wú)關(guān)。

二、多項(xiàng)式

1、幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。

2、多項(xiàng)式中的每一個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。

3、多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。

4、一個(gè)多項(xiàng)式有幾項(xiàng),就叫做幾項(xiàng)式。

5、多項(xiàng)式的每一項(xiàng)都包括項(xiàng)前面的符號(hào)。

6、多項(xiàng)式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。

7、多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。

三、整式

1、單項(xiàng)式和多項(xiàng)式統(tǒng)稱為整式。

2、單項(xiàng)式或多項(xiàng)式都是整式。

3、整式不一定是單項(xiàng)式。

4、整式不一定是多項(xiàng)式。

5、分母中含有字母的代數(shù)式不是整式;而是今后將要學(xué)習(xí)的分式。

四、整式的加減

1、整式加減的理論根據(jù)是:去括號(hào)法則,合并同類項(xiàng)法則,以及乘法分配率。

2、幾個(gè)整式相加減,關(guān)鍵是正確地運(yùn)用去括號(hào)法則,然后準(zhǔn)確合并同類項(xiàng)。

3、幾個(gè)整式相加減的一般步驟:

(1)列出代數(shù)式:用括號(hào)把每個(gè)整式括起來(lái),再用加減號(hào)連接。

(2)按去括號(hào)法則去括號(hào)。

(3)合并同類項(xiàng)。

4、代數(shù)式求值的一般步驟:

(1)代數(shù)式化簡(jiǎn)。

(2)代入計(jì)算

(3)對(duì)于某些特殊的代數(shù)式,可采用“整體代入”進(jìn)行計(jì)算。

五、同底數(shù)冪的乘法

1、n個(gè)相同因式(或因數(shù))a相乘,記作an,讀作a的n次方(冪),其中a為底數(shù),n為指數(shù),an的結(jié)果叫做冪。

2、底數(shù)相同的冪叫做同底數(shù)冪。

3、同底數(shù)冪乘法的運(yùn)算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。即:am﹒an=am+n。

4、此法則也可以逆用,即:am+n=am﹒an。

5、開(kāi)始底數(shù)不相同的冪的乘法,如果可以化成底數(shù)相同的冪的乘法,先化成同底數(shù)冪再運(yùn)用法則。

六、冪的乘方

1、冪的乘方是指幾個(gè)相同的冪相乘。(am)n表示n個(gè)am相乘。

2、冪的乘方運(yùn)算法則:冪的乘方,底數(shù)不變,指數(shù)相乘。(am)n=amn。

3、此法則也可以逆用,即:amn=(am)n=(an)m。

七、積的乘方

1、積的乘方是指底數(shù)是乘積形式的乘方。

2、積的乘方運(yùn)算法則:積的乘方,等于把積中的每個(gè)因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。

3、此法則也可以逆用,即:anbn=(ab)n。

八、三種“冪的運(yùn)算法則”異同點(diǎn)

1、共同點(diǎn):

(1)法則中的底數(shù)不變,只對(duì)指數(shù)做運(yùn)算。

(2)法則中的底數(shù)(不為零)和指數(shù)具有普遍性,即可以是數(shù),也可以是式(單項(xiàng)式或多項(xiàng)式)。

(3)對(duì)于含有___個(gè)或___個(gè)以上的運(yùn)算,法則仍然成立。

2、不同點(diǎn):

(1)同底數(shù)冪相乘是指數(shù)相加。

(2)冪的乘方是指數(shù)相乘。

(3)積的乘方是每個(gè)因式分別乘方,再將結(jié)果相乘。

九、同底數(shù)冪的除法

1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即:am÷an=am-n(a≠0)。

2、此法則也可以逆用,即:am-n=am÷an(a≠0)。

十、零指數(shù)冪

1、零指數(shù)冪的意義:任何不等于0的數(shù)的___次冪都等于1,即:a0=1(a≠0)。

十一、負(fù)指數(shù)冪

1、任何不等于零的數(shù)的―p次冪,等于這個(gè)數(shù)的p次冪的倒數(shù),即:

注:在同底數(shù)冪的除法、零指數(shù)冪、負(fù)指數(shù)冪中底數(shù)不為0。

十二、整式的乘法

(一)單項(xiàng)式與單項(xiàng)式相乘

1、單項(xiàng)式乘法法則:?jiǎn)雾?xiàng)式與單項(xiàng)式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余字母連同它的指數(shù)不變,作為積的因式。

2、系數(shù)相乘時(shí),注意符號(hào)。

3、相同字母的冪相乘時(shí),底數(shù)不變,指數(shù)相加。

4、對(duì)于只在一個(gè)單項(xiàng)式中含有的字母,連同它的指數(shù)一起寫(xiě)在積里,作為積的因式。

5、單項(xiàng)式乘以單項(xiàng)式的結(jié)果仍是單項(xiàng)式。

6、單項(xiàng)式的乘法法則對(duì)于三個(gè)或三個(gè)以上的單項(xiàng)式相乘同樣適用。

(二)單項(xiàng)式與多項(xiàng)式相乘

1、單項(xiàng)式與多項(xiàng)式乘法法則:?jiǎn)雾?xiàng)式與多項(xiàng)式相乘,就是根據(jù)分配率用單項(xiàng)式去乘多項(xiàng)式中的每一項(xiàng),再把所得的積相加。即:m(a+b+c)=ma+mb+mc。

2、運(yùn)算時(shí)注意積的符號(hào),多項(xiàng)式的每一項(xiàng)都包括它前面的符號(hào)。

3、積是一個(gè)多項(xiàng)式,其項(xiàng)數(shù)與多項(xiàng)式的項(xiàng)數(shù)相同。

4、混合運(yùn)算中,注意運(yùn)算順序,結(jié)果有同類項(xiàng)時(shí)要合并同類項(xiàng),從而得到最簡(jiǎn)結(jié)果。

(三)多項(xiàng)式與多項(xiàng)式相乘

1、多項(xiàng)式與多項(xiàng)式乘法法則:多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式的每一項(xiàng)乘另一個(gè)多項(xiàng)式的每一項(xiàng),再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。

2、多項(xiàng)式與多項(xiàng)式相乘,必須做到不重不漏。相乘時(shí),要按一定的順序進(jìn)行,即一個(gè)多項(xiàng)式的每一項(xiàng)乘以另一個(gè)多項(xiàng)式的每一項(xiàng)。在未合并同類項(xiàng)之前,積的項(xiàng)數(shù)等于兩個(gè)多項(xiàng)式項(xiàng)數(shù)的積。

3、多項(xiàng)式的每一項(xiàng)都包含它前面的符號(hào),確定積中每一項(xiàng)的符號(hào)時(shí)應(yīng)用“同號(hào)得正,異號(hào)得負(fù)”。

4、運(yùn)算結(jié)果中有同類項(xiàng)的要合并同類項(xiàng)。

5、對(duì)于含有同一個(gè)字母的一次項(xiàng)系數(shù)是1的兩個(gè)一次二項(xiàng)式相乘時(shí),可以運(yùn)用下面的公式簡(jiǎn)化運(yùn)算:(__+a)(__+b)=__2+(a+b)__+ab。

十三、平方差公式

1、(a+b)(a-b)=a___-b2,即:兩數(shù)和與這兩數(shù)差的積,等于它們的平方之差。

2、平方差公式中的a、b可以是單項(xiàng)式,也可以是多項(xiàng)式。

3、平方差公式可以逆用,即:a___-b2=(a+b)(a-b)。

4、平方差公式還能簡(jiǎn)化兩數(shù)之積的運(yùn)算,解這類題,首先看兩個(gè)數(shù)能否轉(zhuǎn)化成

(a+b)(a-b)的形式,然后看a2與b2是否容易計(jì)算。

篇8

數(shù)字(也就是數(shù)碼),是用來(lái)記數(shù)的符號(hào),通常用國(guó)際通用的阿拉伯?dāng)?shù)字 0~9這十個(gè)數(shù)字。其他還有中國(guó)小寫(xiě)數(shù)字,大寫(xiě)數(shù)字,羅馬數(shù)字等等。

數(shù)是由數(shù)字和數(shù)位組成。

1.0的意義:0既可以表示“沒(méi)有”,也可以作為某些數(shù)量的界限。如溫度等。0是一個(gè)完全有確定意義的數(shù)。0是最小的自然數(shù),是一個(gè)偶數(shù)。00是最小的自然數(shù),是一個(gè)偶數(shù)。是任何自然數(shù)(0除外)的倍數(shù)。0不能作除數(shù)。

2.自然數(shù):用來(lái)表示物體個(gè)數(shù)的0、1、2、3、4、5、6、7、8、9、10……叫做自然數(shù)。簡(jiǎn)單說(shuō)就是大于等于零的整數(shù)。

3.整數(shù): 自然數(shù)都是整數(shù),整數(shù)不都是自然數(shù)。

4.小數(shù):小數(shù)是特殊形式的分?jǐn)?shù),所有分?jǐn)?shù)都可以表示成小數(shù),小數(shù)中的圓點(diǎn)叫做小數(shù)點(diǎn)。但是不能說(shuō)小數(shù)就是分?jǐn)?shù)。

5.混小數(shù)(帶小數(shù)):小數(shù)的整數(shù)部分不為零的小數(shù)叫混小數(shù),也叫帶小數(shù)。

5.純小數(shù):小數(shù)的整數(shù)部分為零的小數(shù),叫做純小數(shù)。

7.有限小數(shù):小數(shù)的小數(shù)部分只有有限個(gè)數(shù)字的小數(shù)(不全為零)叫做有限小數(shù)。

8.無(wú)限小數(shù):小數(shù)的小數(shù)部分有無(wú)數(shù)個(gè)數(shù)字(不包含全為零)的小數(shù),叫做無(wú)限小數(shù)。循環(huán)小數(shù)都是無(wú)限小數(shù),無(wú)限小數(shù)不一定都是循環(huán)小數(shù)。例如,圓周率π也是無(wú)限小數(shù)。

9.循環(huán)小數(shù):小數(shù)部分一個(gè)數(shù)字或幾個(gè)數(shù)字依次不斷地重復(fù)出現(xiàn),這樣的小數(shù)叫做循環(huán)小數(shù)。例如:0.333……,1.2470470470……都是循環(huán)小數(shù)。

10.純循環(huán)小數(shù):循環(huán)節(jié)從十分位就開(kāi)始的循環(huán)小數(shù),叫做純循環(huán)小數(shù)。

11.混循環(huán)小數(shù):與純循環(huán)小數(shù)有的區(qū)別,不是從十分位開(kāi)始循環(huán)的循環(huán)小數(shù),叫混循環(huán)小數(shù)。

12.無(wú)限不循環(huán)小數(shù):一個(gè)小數(shù),從小數(shù)部分起到無(wú)限位數(shù),沒(méi)有一個(gè)數(shù)字或幾個(gè)數(shù)字依次不斷的重復(fù)出現(xiàn),這樣的小數(shù)叫做無(wú)限不循環(huán)小數(shù)。

推薦期刊